Project Icon

Paddle2ONNX

将PaddlePaddle模型转换为ONNX格式的开源工具

Paddle2ONNX 是一个开源工具,用于将PaddlePaddle模型转换为ONNX格式,使模型能够部署到多种ONNX支持的推理引擎如TensorRT、OpenVINO等。Paddle2ONNX不依赖其他组件,只需通过pip安装即可使用。它提供命令行接口和多种参数选项,支持模型优化与量化,适用于不同的部署需求。了解如何安装、使用及优化Paddle模型到ONNX格式,提升部署效率与性能。

Pix2Text - 开源Python工具,支持高精度数学公式检测和80多种语言的文本识别
GithubOCRPix2Text开源开源项目数学公式检测表格识别
Pix2Text是一款免费开源的Python工具,主要功能与Mathpix类似,能够将复杂布局的图像、表格、文本和数学公式转换为Markdown格式。它支持超过80种语言的文本识别,包括简体中文、繁体中文、英语和越南语。最新的V1.1.1版本引入了新的数学公式检测模型,大幅提升了识别准确性。用户也可以通过在线服务和演示来体验其强大功能。
fonnx - 跨平台加速Flutter应用的ONNX模型运行库
FONNXFlutterGithubONNX开源项目机器学习模型跨平台开发
FONNX是一个专为Flutter设计的跨平台ONNX模型运行库,支持在iOS、Android、Web等多个平台上原生执行机器学习模型。该库充分利用各平台的本地加速能力,如iOS的CoreML和Android的Neural Networks API,显著提升机器学习应用的性能。FONNX不仅支持直接使用Hugging Face的ONNX模型,还提供了将PyTorch、TensorFlow等格式模型转换为ONNX的便捷工具。
OnnxStack - 高效机器学习集成框架 无缝对接.NET生态
.NETGithubONNX RuntimeStableDiffusion图像处理开源项目机器学习
OnnxStack为.NET开发者提供了一个便捷的机器学习集成方案。它与ONNX Runtime和Microsoft ML无缝对接,支持Stable Diffusion、图像放大和对象检测等AI模型。开发者可以在.NET环境中直接构建和运行机器学习应用,不再依赖Python。这个框架大大简化了AI开发流程,是.NET生态系统中的一个重要补充。
netron - 多格式神经网络和机器学习模型查看器
GithubNetron开源项目机器学习模型查看器深度学习神经网络
支持多种格式的神经网络、深度学习和机器学习模型查看,包括ONNX、TensorFlow Lite、Core ML、Keras和Caffe等,实验性支持PyTorch、TorchScript等。适用于macOS、Linux、Windows和浏览器版本,提供简单的安装和启动方式,方便不同操作系统用户使用。
coremltools - Core ML格式模型转换和优化工具
Core MLCore ML ToolsGithubPython包开源项目机器学习模型转换
coremltools工具可以将TensorFlow、PyTorch、scikit-learn等机器学习模型转换为Core ML格式,并支持对这些模型的读写、优化和验证。这些模型可以无缝集成到Xcode项目中使用。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
MiniCPM-V-2_6-gguf - 高性能GGUF格式多模态模型转换与部署指南
GithubHuggingfaceMiniCPM-V多模态开源项目推理模型模型转换量化
MiniCPM-V-2.6是一个支持GGUF格式转换的多模态模型项目。项目展示了PyTorch模型到GGUF格式的转换流程,实现F16和INT4量化,并在Linux及Mac平台实现本地部署。项目提供完整的模型转换、构建和推理步骤,方便开发者进行多模态模型的本地化部署。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANGithubPyTorchpix2pix图像翻译开源项目神经网络
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
sherpa-onnx - 多平台本地运行的语音处理开源项目
GithubSherpa开源项目语言识别语音合成语音识别音频标记
Sherpa-onnx是一个支持多平台、多功能的语音处理开源项目,涵盖语音识别、语音合成、说话人验证、语言识别等功能,兼容安卓、iOS、Windows、macOS、Linux等系统。支持多种编程语言如C++、C、Python、Go、C#、Java、Kotlin、JavaScript、Swift和Dart,提供预构建的APK和Flutter应用,以及开源预训练模型,便于语音处理开发和部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号