Project Icon

LLM-Agent-Survey

大语言模型驱动智能体的构建应用与评估综述

该研究全面综述了基于大语言模型(LLM)的自主智能体,探讨了智能体的核心组件和应用领域。作为该领域首个发表的综述论文,研究分析了LLM智能体在多个学科的应用,并讨论了评估策略,为该快速发展领域的研究人员提供了宝贵见解。

A Survey on LLM-based Autonomous Agents

Growth Trend

Autonomous agents are designed to achieve specific objectives through self-guided instructions. With the emergence and growth of large language models (LLMs), there is a growing trend in utilizing LLMs as fundamental controllers for these autonomous agents. While previous studies in this field have achieved remarkable successes, they remain independent proposals with little effort devoted to a systematic analysis. To bridge this gap, we conduct a comprehensive survey study, focusing on the construction, application, and evaluation of LLM-based autonomous agents. In particular, we first explore the essential components of an AI agent, including a profile module, a memory module, a planning module, and an action module. We further investigate the application of LLM-based autonomous agents in the domains of natural sciences, social sciences, and engineering. Subsequently, we delve into a discussion of the evaluation strategies employed in this field, encompassing both subjective and objective methods. Our survey aims to serve as a resource for researchers and practitioners, providing insights, related references, and continuous updates on this exciting and rapidly evolving field.

📍 This is the first released and published survey paper in the field of LLM-based autonomous agents.

Paper link: A Survey on Large Language Model based Autonomous Agents

Update Records

  • 🔥 [25/3/2024] Our survey paper has been accepted by Frontiers of Computer Science, which is the first published survey paper in the field of LLM-based agents.

  • 🔥 [9/28/2023] We have compiled and summarized papers related to LLM-based Agents that have been accepted by Neurips 2023 in the repository LLM-Agent-Paper-Digest. This repository will continue to be updated with accepted agent-related papers in the future.

  • 🔥 [9/8/2023] The second version of our survey has been released on arXiv.

    Updated contents
    • 📚 Additional References

      • We have added 31 new works until 9/1/2023 to make the survey more comprehensive and up-to-date.
    • 📊 New Figures

      • Figure 3: This is a new figure illustrating the differences and similarities between various planning approaches. This helps in gaining a clearer understanding of the comparisons between different planning methods. single-path and multi-path reasoning
      • Figure 4: This is a new figure that describes the evolutionary path of model capability acquisition from the "Machine Learning era" to the "Large Language Model era" and then to the "Agent era." Specifically, a new concept, "mechanism engineering," has been introduced, which, along with "parameter learning" and "prompt engineering," forms part of this evolutionary path. Capabilities Acquisition
    • 🔍 Optimized Classification System

      • We have slightly modified the classification system in our survey to make it more logical and organized.
  • 🔥 [8/23/2023] The first version of our survey has been released on arXiv.

Table of Content

🤖 Construction of LLM-based Autonomous Agent

Architecture Design

ModelProfileMemoryPlanningActionCAPaperCode
OperationStructure
WebGPT----w/ toolsw/ fine-tuningPaper-
SayCan---w/o feedbackw/o toolsw/o fine-tuningPaperCode
MRKL---w/o feedbackw/ tools-Paper-
Inner Monologue---w/ feedbackw/o toolsw/o fine-tuningPaperCode
Social SimulacraGPT-Generated---w/o tools-Paper-
ReAct---w/ feedbackw/ toolsw/ fine-tuningPaperCode
LLM Planner---w/ feedbackw/o toolsEnvironment feedbackPaperCode
MALLM-Read/WriteHybrid-w/o tools-Paper-
aiflows-Read/Write/
Reflection
Hybridw/ feedbackw/ tools-PaperCode
DEPS---w/ feedbackw/o toolsw/o fine-tuningPaperCode
Toolformer---w/o feedbackw/ toolsw/ fine-tuningPaperCode
Reflexion-Read/Write/
Reflection
Hybridw/ feedbackw/o toolsw/o fine-tuningPaperCode
CAMELHandcrafting & GPT-Generated--w/ feedbackw/o tools-PaperCode
API-Bank---w/ feedbackw/ toolsw/o fine-tuningPaper-
Chameleon---w/o feedbackw/ tools-PaperCode
ViperGPT----w/ tools-PaperCode
HuggingGPT--Unifiedw/o feedbackw/ tools-PaperCode
Generative AgentsHandcraftingRead/Write/
Reflection
Hybridw/ feedbackw/o tools-PaperCode
LLM+P---w/o feedbackw/o tools-
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号