Project Icon

pennylane

跨平台量子计算与机器学习Python库

PennyLane是一个跨平台的Python库,专注于量子计算、量子机器学习和量子化学。集成了PyTorch、TensorFlow、JAX和NumPy等流行框架,支持量子硬件上的机器学习。支持即时代码编译和多种量子后端,提供自动微分功能,并包括量子模拟器和优化工具,便于快速原型设计。

qlib - 开源AI量化投资平台
GithubQlib人工智能开源项目机器学习模型量化投资
Qlib是一个开源AI量化投资平台,利用AI技术赋能金融研究和价值创造。支持监督学习、市场动态建模和强化学习等多种机器学习模式,覆盖量化投资的全部流程,如alpha寻求、风险管理、投资组合构建及订单执行。平台不断更新,引入最新量化研究成果和论文。
QuEST - 多平台高性能量子计算模拟工具包
GithubQuEST开源软件开源项目量子电路量子计算模拟高性能计算
QuEST是一款开源的高性能量子计算模拟工具包。它支持多线程、GPU加速和分布式计算,可在多种硬件平台上运行。QuEST提供了丰富的功能,包括密度矩阵、通用幺正操作、退相干通道和厄米算符模拟等。该工具包易于使用,无需安装,兼容多种编译器,为量子计算研究提供了强大的模拟能力。
ai_quant_trade - AI量化交易平台,支持策略学习与实盘操作
Github因子挖掘开源项目强化学习机器学习深度学习股票AI操盘手
此平台提供从学习、模拟到实盘的一站式AI量化交易服务,涵盖因子挖掘、机器学习、深度学习和强化学习等策略,配备辅助操盘工具。详细教程和多种策略案例适合机构和个体投资者,支持高频交易和股票推荐。最新功能包括StructBERT市场情绪分析、强化学习交易和机器学习自动挖掘因子。
quacc - 多功能的计算材料科学和量子化学平台
Atomic Simulation EnvironmentGithubquacc工作流管理开源项目计算材料科学量子化学
quacc(Quantum Accelerator)是一个计算材料科学和量子化学平台,专为大数据时代设计。该平台提供预制工作流程,支持本地、HPC和云端运行,通过统一接口兼容多种工作流管理方案。quacc基于原子模拟环境和Materials Project基础设施,整合社区资源。由普林斯顿大学Rosen研究组维护,quacc为研究者提供多功能、高效的计算工具。
torchquad - 基于GPU加速的开源数值积分框架
GPUGithubPyTorchtorchquad开源项目数值积分机器学习
torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
qkeras - Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型
GithubKerasQKerasTensorFlow开源项目深度学习量化
QKeras 是一个针对 Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型。项目设计遵循用户友好、模块化和易扩展的原则,包括 QDense 和 QConv2D 等多种量化层。QTools 用于辅助硬件实现和能耗估算,AutoQKeras 可以自动进行模型量化和重新平衡。此项目提供简单易用的界面,适用于快速原型设计、前沿研究和生产环境。
Laplace - 神经网络拉普拉斯近似的开源库
GithubLaplace后验近似开源项目神经网络贝叶斯深度学习边缘似然
Laplace是一个用于神经网络拉普拉斯近似的Python库。它支持对整个网络、子网络或最后一层进行后验近似、边际似然估计和后验预测计算。该库提供API接口,支持多种Hessian结构和权重子集,可用于模型选择、不确定性量化和持续学习。Laplace兼容Hugging Face模型和参数高效微调方法,为贝叶斯深度学习提供了灵活的实现工具。
brevitas - 面向神经网络量化的PyTorch库
BrevitasGithubPyTorch开源项目神经网络量化训练后量化量化感知训练
Brevitas是一个开源的神经网络量化PyTorch库,支持PTQ和QAT。它为常见PyTorch层提供量化版本,如QuantConv和QuantLSTM等,允许精细调整量化参数。兼容Python 3.8+和PyTorch 1.9.1-2.1,跨平台支持,推荐GPU加速。作为研究项目,Brevitas在深度学习模型压缩和效率优化方面具有重要应用价值。
penzai - 用于构建、编辑和可视化神经网络的 JAX 研究工具包
GithubJAXPenzai开源项目模型可视化深度学习神经网络
Penzai是一个基于JAX的库,专为通过函数式pytree数据结构编写模型而设计,并提供丰富的工具用于可视化、修改和分析。适用于反向工程、模型组件剥离、内部激活检查、模型手术和调试等领域。Penzai包括Treescope交互式Python打印工具、JAX树和数组操作工具、声明式神经网络库及常见Transformer架构的模块化实现。该库简化了模型处理过程,为研究神经网络的内部机制与训练动态提供了支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号