Project Icon

wav2vec2-xls-r-1b-ca-lm

基于先进技术的加泰罗尼亚语语音识别模型

此模型是在facebook/wav2vec2-xls-r-300m的基础上微调的,专注于加泰罗尼亚语自动语音识别。通过使用Mozilla Common Voice 8.0及其他数据集进行优化训练,该模型在加泰罗尼亚口音识别上展现出高效性能。适用于需要精准语音识别的场景,尽管资源稀缺的方言可能效果较差。模型精度得益于优化后的学习率和批量大小,是语音识别技术发展的重要里程碑。

speech-recognition-uk - 乌克兰语自动语音识别和语音合成
GithubUkrainian开源项目自动化语音转文本自然语言处理语音合成语音识别
本项目集成了乌克兰语的自动语音识别和语音合成的最新进展与数据集。详细涵盖了多种语音模型如wav2vec2和Citrinet,同时提供模型评估和测试结果。加入我们的Discord或Telegram社区,共同推动乌克兰语语音技术的前沿发展。
LIMA-13b-hf - 基于Transformer架构的自动回归语言模型,用于自然语言处理的研究
GithubHuggingfaceLLaMA偏见评估大语言模型开源项目模型模型性能自然语言处理
LLaMA是由Meta AI的FAIR团队开发的基于Transformer架构的自动回归语言模型,专为自然语言处理和机器学习研究人员而设计。该模型提供7B、13B、33B和65B参数的多种规格,支持问答和自然语言理解等研究用途,并注重偏见和有害内容生成的评估与减少。虽然使用20种语言进行训练,但其在英语文本处理上表现更佳。LLaMA被定位为AI研究基础工具,不建议直接应用于未经评估的下游应用。
stt_en_conformer_transducer_xlarge - Conformer-Transducer模型的超大规模语音识别能力
GithubHuggingfaceNVIDIA ConformerNVIDIA Riva开源项目模型模型训练自动语音识别语音转录
Conformer-Transducer超大模型拥有600M参数,专为英语自动语音识别设计,以较低的字错误率(WER)脱颖而出。通过NVIDIA NeMo工具包训练,涵盖LibriSpeech、Mozilla Common Voice等多个数据集。模型支持Python调用,具备细化调优和批量处理功能,适合多种语音识别应用。虽然暂未兼容NVIDIA Riva,但其在英语语音处理方面表现卓越。
Llama-3.1-405B - Meta开发的多语言大规模语言模型集合,支持商业和研究使用
GithubHuggingfaceLlama 3.1人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta开发的多语言大型语言模型系列,提供8B、70B和405B三种规模。模型采用优化的Transformer架构,支持128k上下文长度,使用分组查询注意力机制提升推理效率。经指令微调后,可用于多语言对话等场景,在行业基准测试中表现出色。支持8种语言,适用于商业和研究用途,如助手式聊天和自然语言生成等任务。
awesome-large-audio-models - 音频AI模型前沿进展与资源汇总
Github大型音频模型开源项目语音合成语音识别跨模态AI音乐生成
本项目汇总了音频AI领域的精选资源,涵盖语音识别、合成、翻译等多个方向的前沿进展。定期更新最新论文和开源实现,为研究者和开发者提供全面了解音频AI发展的平台。内容包括主流大型音频模型、各应用领域技术及大规模数据集,是音频AI研究的重要参考资料。
TensorFlowASR - TensorFlow 2中的智能自动语音识别解决方案
GithubTFLiteTensorFlowASR开源项目模型训练深度学习自动语音识别
TensorFlowASR提供了多种自动语音识别模型,如DeepSpeech2、Jasper和RNN Transducer,支持转换为TFLite格式以减少内存和计算需求。此项目适用于Python 3.8及以上版本和TensorFlow 2.12.0及以上版本,支持多平台,包括Apple Silicon,并提供详细的安装和开发指南。
Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
vits2_pytorch - 单阶段文本到语音转换的效率与质量提升
GithubVITS2单阶段模型对抗学习开源项目文本转语音架构设计
VITS2_pytorch是一款先进的单阶段文本到语音转换模型,采用对抗学习和架构设计改进前代产品。这一最新的非官方实现版本,旨在通过增强模型结构和训练机制,有效提升语音自然度和特征相似性,同时显著降低对音素转换的依赖,从而提高训练和推断的效率。该项目还为专业人士提供了预训练模型和多种语言的样本音频,支持开箱即用的转换学习。
bigvgan_v2_44khz_128band_512x - 神经网络声码器支持多采样率和高倍上采样比音频生成
BigVGANGithubHuggingface开源项目模型深度学习神经声码器语音合成语音生成
BigVGAN-v2是一款神经网络声码器,支持44kHz采样率和512倍上采样比。它使用自定义CUDA内核加速推理,采用多尺度子带CQT判别器和梅尔频谱图损失训练。该模型在多语言语音、环境声音和乐器的大规模数据集上训练,提供多种音频配置的预训练检查点。BigVGAN-v2与Hugging Face Hub集成,提供便捷的使用方式和交互式演示。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号