Project Icon

ClinicalNER

多语言临床命名实体识别模型 提取医疗文本中的药物和用药信息

ClinicalNER是一个基于XLM-R Base的多语言临床命名实体识别模型,通过英语n2c2数据集微调。该模型能从医疗文本中提取药物、剂量、频率、持续时间、用量和剂型等实体信息。在法语评估测试集MedNERF上,ClinicalNER展现了优异的零样本跨语言迁移能力,micro-F1分数达0.804。支持英、法、德、西、意等多种语言,ClinicalNER为临床文本分析提供了实用的工具。

gliner_medium_news-v2.1 - GLiNER新闻实体抽取模型提升多语言长文本准确率
GLiNERGithubHuggingface人工智能实体提取开源项目新闻分析模型自然语言处理
GLiNER新闻实体抽取模型通过多样化合成数据集训练,提高了广泛主题的准确性。在18个基准数据集上,零样本准确率提升高达7.5%。该模型采用紧凑架构,适用于高吞吐量生产环境,支持多语言长文本处理,并以Apache 2.0许可开源。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
gliner_small-v2.1 - 基于双向Transformer的轻量级通用实体识别模型
GLiNERGithubHuggingface命名实体识别开源项目机器学习模型模型训练自然语言处理
gliner_small-v2.1是一个基于双向Transformer架构的命名实体识别模型,具备识别任意类型实体的能力。这款模型采用166M参数规模,在保持较小资源占用的同时提供灵活的实体识别功能。模型支持英语处理,采用Apache-2.0许可证开源发布。相比传统NER模型的固定实体类型限制和大语言模型的高资源消耗,该模型提供了一个平衡的解决方案。
meditron - 医疗大语言模型助力临床决策支持
GithubLlama-2Meditron医学推理医疗大语言模型开源开源项目
Meditron是一套开源医疗大语言模型,包含7B和70B两个版本。这些模型基于Llama-2,通过在医学语料库上持续预训练而来。Meditron-70B在医学推理任务中的表现超越了Llama-2-70B、GPT-3.5和Flan-PaLM。虽然Meditron旨在提升临床决策支持,但在实际医疗应用中仍需谨慎,并进行充分的测试和临床试验。
gliner_large-v1 - 资源友好的多实体识别模型,为多种应用场合提供灵活解决方案
GLiNERGithubHuggingfacePile-NER数据集双向变压器编码器命名实体识别开源项目模型模型训练
GLiNER是通过双向转换器编码器实现的命名实体识别模型,可识别多种实体类型。它是传统NER模型和大型语言模型这两者的高效替代,特别适合资源有限的场合。GLiNER在Pile-NER数据集上经过训练,具备灵活性且不受实体类型限制。用户可通过安装并导入GLiNER库轻松进行实体识别。
BioMistral-7B - 多语言开源生物医学语言模型评估
BioMistralGithubHuggingface医学多语言开源开源项目模型量化
BioMistral是专为生物医学设计的开源大型语言模型,基于Mistral,经PubMed Central数据进一步训练,表现出色于多语言医学问答评估。其轻量化模型可通过量化和模型合并提升竞争力,为医学领域首次进行跨语言大规模评估。所有模型、评估基准和脚本免费开放供研究使用,建议避免在临床或专业医疗环境中应用,因存在潜在风险和偏见。
gliner_base - 灵活的命名实体识别模型,适用各种场景
BERTGLiNERGithubHuggingface命名实体识别多语言开源库开源项目模型
GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。
ner-english-large - 基于FLERT技术的英语命名实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
ner-english-large是基于Flair框架的英语命名实体识别模型,采用FLERT技术和XLM-R嵌入。该模型可识别人名、地点、组织和其他实体,F1分数为94.36。它易于集成,适用于多种NLP任务,为研究人员和开发者提供了实用的英语文本分析工具。
MedCPT-Cross-Encoder - 基于PubMed数据的医学文献智能排序模型
GithubHuggingfaceMedCPT-Cross-Encoder医学信息检索开源项目文本排序模型深度学习自然语言处理
MedCPT-Cross-Encoder是一款专注于医学文献检索的跨编码器模型。该模型利用PubMed搜索日志进行预训练,能够根据查询对文章进行智能排序,为生物医学领域提供高效的信息检索服务。由美国国立卫生研究院开发的MedCPT-Cross-Encoder在零样本生物医学信息检索任务中表现出色,为研究人员和医疗专业人士提供了强大的文献筛选工具。
Llama3-OpenBioLLM-8B - 医疗领域的开源语言模型,助力创新与研究
GithubHuggingfaceOpenBioLLM-8B临床问答开源项目模型生物医学自然语言处理训练技术
OpenBioLLM-8B是一个由Saama AI Labs开发的开源生物医学语言模型。该模型通过先进技术和8亿参数的设计,实现了在生物医学任务中的高效表现,超过了同类模型的基准测试。其专注于满足医学和生命科学领域的语言需求,基于大量高质量的生物医学数据进行训练,能够高效生成和理解专业文本,为医疗创新提供支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号