Project Icon

Twice-KoSOLAR-16.1B-test

使用深度扩展技术优化SOLAR语言模型性能

本页面介绍了Depth-Up-Scaling方法如何提升大规模语言模型(LLM)的性能,通过合并Mistral 7B模型权重与持续预训练,SOLAR-10.7B模型在多项自然语言处理任务中表现优异,超越某些30B参数模型。本文比较了不同模型性能,展示了SOLAR-10.7B在多样化调优场景中的适应性和鲁棒性。

OLMo - 开源语言模型加速科学研究
GithubOLMo人工智能开源语言模型开源项目机器学习自然语言处理
OLMo是一个开源语言模型项目,提供多种规模的先进模型,如1B、7B和7B Twin 2T,全部基于Dolma数据集训练。该项目支持模型训练、微调和推理,提供详细配置和检查点以确保研究可重现。OLMo还包含数据检查和评估工具,为语言模型研究提供全面支持,旨在加速这一领域的科学进展。
large_language_model_training_playbook - 大规模语言模型训练指南与实用技巧
GithubLLM Training Playbook大语言模型开源项目张量精度模型并行策略模型架构
此页面提供了大规模语言模型训练的实用指南和资源,涉及模型架构选择、并行策略、模型规模、张量精度、训练超参数设定、最大化吞吐量、稳定性问题、数据处理以及软件和硬件故障调试等主题。这些开放的技巧和工具可以帮助更高效地训练大规模语言模型,并提升其性能和稳定性。
H2O - 提升大型语言模型推理效率的关键token识别技术
GithubH2OKV缓存大语言模型开源项目推理效率注意力机制
H2O项目提出了一种创新的KV缓存实现方法,通过识别对注意力分数贡献最大的少数token,显著减少了大型语言模型推理的内存占用。该项目引入了Heavy Hitter Oracle (H2O)作为KV缓存淘汰策略,在多个任务中验证了其准确性。在OPT-6.7B和OPT-30B模型上,H2O显著提高了推理吞吐量并减少了延迟,为大型语言模型的高效推理提供了新的解决方案。
deberta-large - DeBERTa模型利用解耦注意力机制提升自然语言理解能力
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理语言模型
DeBERTa是微软开发的预训练语言模型,基于BERT和RoBERTa进行改进。该模型引入解耦注意力和增强型掩码解码器,在80GB训练数据上优化后,在多数自然语言理解任务中超越BERT和RoBERTa。DeBERTa在SQuAD和GLUE等基准测试中表现出色,其中DeBERTa-V2-XXLarge版本在多项任务上达到顶尖水平。研究者可通过Hugging Face的transformers库使用和微调DeBERTa模型。
NeuralLLaMa-3-8b-DT-v0.1 - 结合多模型优势的文本生成解决方案,增强任务表现
GithubHuggingfaceLazyMergekitNeuralLLaMa-3-8b-DT-v0.1准确率开源项目文本生成模型模型合并
NeuralLLaMa-3-8b-DT-v0.1 是一种通过融合ChimeraLlama-3-8B-v2、llama-3-stella-8B和llama-3-merged-linear等模型,借助LazyMergekit技术,提升了文本生成任务精确度的开源项目。适用于0-Shot和多次尝试测试,表现出出色的任务表现,严格准确率达43.71%。项目易于集成,支持多种量化配置,适合多种平台应用。
Selective_Context - 高效压缩上下文技术实现大语言模型处理能力倍增
GithubLLMNLP任务Selective Context上下文压缩开源项目效率提升
Selective Context是一种创新上下文压缩技术,能使大语言模型处理内容量提升一倍。该技术利用基础语言模型计算词句自信息,评估信息量,实现长文档和长对话的高效处理。项目提供完整代码实现、数据集和多项实验评估,已获EMNLP 2023会议认可。此上下文压缩技术适用于需要处理大量文本数据的场景,如智能客服、文档分析等。用户可通过pip安装,便捷集成到现有大语言模型项目中,显著提升处理效率。
Skywork - 由昆仑万维集团·天工团队开发的一系列大型模型
GithubSkywork-13B-BaseSkywork-13B-ChatSkywork-13B-MMSkywork-13B-MathSkywork/Skypile-150B开源项目
Skywork-13B系列模型,由昆仑万维集团·天工团队开发,涵盖Skywork-13B-Base, Skywork-13B-Chat, Skywork-13B-Math及Skywork-13B-MM多种模型,适用于多种商业场景。这些模型基于多语言和代码数据预训练,显示出卓越的对话处理能力,尤其在文创领域以及数学和多模态交互方面表现优异。详情可参阅相关的技术报告和评测结果。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Qwen1.5-1.8B - 多语言大规模语言模型支持32K上下文长度
GithubHuggingfaceQwen1.5人工智能多语言支持大语言模型开源项目模型自然语言处理
Qwen1.5是Qwen2的预览版,基于Transformer架构开发的解码器语言模型。它推出了8种不同规模的模型版本,涵盖0.5B至72B的常规模型和一个14B的MoE模型。相较于前代产品,Qwen1.5在对话系统性能、多语言处理能力和32K长文本理解等方面均有显著改进。技术上,该模型采用了SwiGLU激活函数、注意力机制的QKV偏置和分组查询等创新方法,同时优化了针对多语言和编程代码的分词器。
llm-toys - 微调小型语言模型实现多任务处理
Githubllm-toys任务微调低资源模型对话摘要开源项目语气变化
llm-toys 项目提供适用于释义、语气转换、对话总结和主题生成等任务的小型量化3B和7B语言模型。这些经过微调的模型能在普通消费级硬件上高效运行,并通过简单的安装步骤提升文本处理和生成能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号