Project Icon

Qwen2-VL-7B-Instruct-GPTQ-Int4

量化模型支持多分辨率视觉理解

Qwen2-VL-7B-Instruct-GPTQ-Int4是一款量化视觉语言模型,支持多分辨率图像和20分钟以上视频理解。模型具备复杂推理能力,可应用于移动设备和机器人操作。支持多语言理解,包括欧洲语言、日语和韩语等。采用动态分辨率和多模态旋转位置嵌入技术,在视觉理解基准测试中表现出色。

LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
EVE - 无编码器视觉语言模型实现高效性能
EVEGithub开源项目微调无编码器视觉语言模型预训练
EVE项目开发了一种无编码器的视觉语言模型架构,通过高效训练策略和精选数据集实现了与现有编码器基础模型相当的性能。该模型支持任意纵横比图像输入,在多项基准测试中表现优异。EVE-7B和EVE-7B-HD两个版本在视觉语言任务中展现了强大能力,为跨模态纯解码器架构提供了高效实用的开发方法。
ban-vqa - 高性能视觉问答与图像实体定位模型
Bilinear Attention NetworksGithub图像处理开源项目深度学习神经网络视觉问答
项目实现了Bilinear Attention Networks,应用于视觉问答和图像实体定位。VQA 2.0测试集上性能优异,单模型得分70.35,集成模型达71.84。Flickr30k实体任务中,Recall@1/5/10分别为69.88/84.39/86.40。基于PyTorch构建,包含预训练模型和完整工作流程,便于进行相关研究或实际应用开发。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
Video-LLaMA - 指令微调的音视频语言模型实现多模态视频理解
AI对话GithubVideo-LLaMA多模态开源项目视频理解语言模型
Video-LLaMA是一个多模态AI项目,为大型语言模型赋予视频和音频理解能力。该项目基于BLIP-2和MiniGPT-4构建,包含视觉-语言和音频-语言两个分支。经过大规模视频和图像数据预训练及指令微调后,Video-LLaMA能够进行视频分析、音频理解和多轮对话。该模型支持英文和中文交互,为视频内容分析提供了新的AI解决方案。
GLM-4 - 多语言支持与长文本处理能力
AI对话GLM-4Github多模态大语言模型开源项目长文本
GLM-4-9B系列是智谱AI推出的开源预训练模型,包括基础版、支持128K上下文的Chat版、1M长文本版及多模态版。该系列支持26种语言,在语义理解、数学计算、逻辑推理等多项评测中表现优异。GLM-4-9B-Chat具备网页浏览、代码执行等功能,GLM-4V-9B则增加了视觉理解能力。这些模型在多项基准测试中均超越了同规模竞品。
aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
LLaVA-HR - 混合分辨率适应技术助力多模态大模型
GithubLLaVA-HR多模态大语言模型开源项目视觉语言任务高分辨率
LLaVA-HR是一个采用混合分辨率适应技术的多模态大语言模型。它支持1536x1536的高分辨率图像输入,提高了细粒度视觉语言任务的性能。该模型在保持与LLaVA-1.5相近训练成本的同时,在多个基准测试中表现出色。LLaVA-HR为研究社区提供了一个新的基线,展示了混合分辨率适应方法在提升多模态模型性能方面的潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号