Project Icon

Qwen2.5-7B-Instruct-AWQ

优化的大规模语言模型,支持长文本处理与多语言生成

Qwen2.5 增强版在知识获取、编程和数学能力上有显著提升,支持最大128K的长文本处理及29种语言,优化用于指令追踪和生成结构化数据,尤其适合聊天机器人应用。

Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
MPP-LLaVA - 基于QwenLM的多模态并行系统,支持多轮对话及视频交流
GithubMPPQwen-Nextsft数据多轮对话开源项目流水线并行视频对话
MPP-Qwen-Next项目基于QwenLM,提供多模态流水线并行系统,支持多轮对话、视频对话和多图对话功能。借助DeepSpeed Pipeline Parallel技术,实现高效的单图、多图及视频推理。项目包含详细的预训练和指令微调数据,适用于多种对话场景,并专为大规模显卡配置进行了优化。
Llama-2-70B-Chat-AWQ - 基于AWQ的4位量化法优化多用户环境推理效率
AI助手GithubHuggingfaceLlama 2Meta开源项目性能优化模型量化
AWQ是一种高效的四位量化方法,能够提升Transformer的推理速度。结合vLLM,该方案在多用户服务器中实现高吞吐量的并发推理。AWQ的优势包括支持使用较小的GPU进行运行,简化部署要求并降低整体成本。例如,一个70B模型可在一台48GB的GPU上运行,而无需使用两台80GB设备。尽管目前整体吞吐量仍低于未量化模型,AWQ提供了更灵活的硬件选择。
rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
InternLM - 支持1M上下文的聊天模型
GithubInternLM2.5人工智能增强学习开源项目搜集信息长上下文
InternLM2.5系列采用最新技术,专注于AI研究和商业应用的长文本处理和逻辑推理,提供1M文本窗口处理能力和优化的指令遵循与用户互动体验。适合广泛的应用场景。
Xwin-LM-7B-V0.2 - 优化大语言模型对齐技术,显著提升性能
AlpacaEvalGithubHuggingfaceXwin-LM大语言模型对齐技术开源项目强化学习模型
Xwin-LM项目开发并开源大语言模型对齐技术,涵盖监督微调、奖励模型等多种方法。基于Llama2构建的版本在AlpacaEval评测中表现卓越,超过GPT-4。最新的Xwin-LM-7B-V0.2和13B-V0.2在与GPT-4的比较中分别达到59.83%和70.36%胜率。项目不断更新以提高模型的稳定性和可重复性。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号