Project Icon

nanodet

轻量级移动设备实时目标检测模型

NanoDet-Plus 是一款超轻量级高精度的无锚目标检测模型,专为移动设备实时检测设计。其模型文件仅有980KB(INT8)或1.8MB(FP16),在ARM CPU上实现97fps检测速度,精度达34.3 mAP@0.5:0.95。NanoDet-Plus 训练友好,GPU内存占用低,支持ncnn、MNN、OpenVINO等多种后端,提供基于ncnn的安卓演示。此模型在COCO数据集上提升了7 mAP,支持多种分辨率和配置,满足不同场景需求。

nano-llama31 - 轻量级Llama 3.1架构实现 提供训练微调和推理功能
AI模型GithubLlama 3.1nanoGPT开源项目微调深度学习
nano-llama31是一个轻量级的Llama 3.1架构实现,无需额外依赖。该项目聚焦8B基础模型,提供训练、微调和推理功能。相比Meta官方和Hugging Face的版本,代码更为精简。目前正在开发中,已支持Tiny Stories数据集的微调。未来计划增加混合精度训练、分布式数据并行等功能,并考虑扩展到更大规模的Llama 3模型。
SSD-Tensorflow - 目标检测的单一网络实现
COCOGithubPascal VOCSSDTensorFlowVGG开源项目
SSD是一种高效的目标检测框架,利用单一网络结构实现物体识别。该项目提供了TensorFlow的重实现版本,支持VGG架构并且易于扩展到其他变种,如ResNet和Inception。项目包括数据集接口、网络定义和数据预处理模块,用户可以通过提供的脚本进行模型训练和评估,支持Pascal VOC数据集。代码和示例帮助用户快速上手并应用于实际检测任务。
OnnxStream - 适用于低资源设备的模型运行的内存优化的推理库
GithubMistral 7BOnnxStreamStable Diffusion XLTinyLlama开源项目性能
OnnxStream专为优化内存使用而设计,支持在低资源设备上高效运行大型模型如Stable Diffusion和TinyLlama。在仅有512MB RAM的Raspberry Pi Zero 2上,实现图像生成和语言模型推理,而无需额外交换空间或磁盘写入。通过解耦推理引擎与模型权重组件,OnnxStream显著降低内存消耗,提供轻量且高效的推理解决方案。其静态量化和注意力切片技术增强了多种应用中的适应性和性能。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
deepdetect - 用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架
APIDeepDetectGithub图像分类开源项目机器学习深度学习
DeepDetect是一个用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架。它专注于易用性和高性能,支持分类、目标检测、分割、回归等任务,适用于图像、文本和时间序列数据。该工具可自动将模型转换为嵌入式平台(如TensorRT、NCNN),无需数据库,所有数据和模型参数均存储在文件系统中。DeepDetect通过JSON格式通信,提供Python和Javascript客户端,易于集成到现有应用中。
convnextv2-tiny-1k-224 - 基于全新框架节点,优化卷积网络的性能
ConvNeXt V2FCMAEGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型
ConvNeXt V2引入了全新的全卷积掩码自动编码器框架及全局响应归一化层,提升卷积网络在多种识别基准的表现,经过ImageNet-1K数据集微调,适合高精度图像分类任务及视觉识别应用。
nntrainer - 设备端神经网络训练与个性化框架
GithubNNtrainer个性化嵌入式设备开源项目机器学习神经网络
NNtrainer是专为资源受限的嵌入式设备设计的开源神经网络训练框架。支持k-NN、神经网络和逻辑回归等多种机器学习算法,提供少样本学习、ResNet和VGG等任务示例。通过设备端微调实现模型个性化,高效利用有限资源。NNtrainer独特之处在于支持设备端完整训练流程,而非仅限于推理。这使得它在保护用户数据隐私的同时,能够实现个性化模型优化。框架已在Samsung Galaxy智能手机和Ubuntu PC上验证可用。
YOLOv8-multi-task - 轻量级神经网络实现实时多任务目标检测与分割
GithubYOLOv8多任务学习开源项目目标检测自动驾驶语义分割
YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。
mobilenetv2_100.ra_in1k - 轻量级CNN模型实现图像分类与特征提取
GithubHuggingfaceImageNet-1kMobileNetV2timm图像分类开源项目模型特征提取
MobileNetV2是为移动和嵌入式视觉应用设计的轻量级卷积神经网络。该模型在ImageNet-1k数据集上训练,采用RandAugment数据增强和EMA权重平均技术。MobileNetV2在低计算复杂度下实现了高效的图像分类和特征提取。通过timm库,开发者可以便捷地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号