Project Icon

Ruqiya_-_Merge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabic-gguf

通过量化技术增强阿拉伯语模型的表现力

项目旨在通过融合与微调Merge-Gemma-2b-it模型,提升阿拉伯语语言模型的精确性。借助LazyMergekit工具,将Ruqiya团队开发的微调模型与Google基准模型结合,并采用多个量化方法,提升模型的性能与存储效率。量化工作由Richard Erkhov完成,GitHub上提供了多种模型版本供用户使用。从数据配置到实际应用,项目提供全面的技术支持,以优化语言生成任务。

gemma-2-9b-it - Google开源轻量级语言模型支持多种文本生成
GemmaGithubHuggingface人工智能大语言模型开源项目文本生成机器学习模型
Gemma 2-9b-it是Google推出的轻量级开源大语言模型,基于Gemini技术开发。这款英语文本生成模型提供预训练和指令微调版本,适用于问答、摘要和推理等任务。其轻量级设计支持在资源受限环境部署,让更多人能够使用先进AI技术,促进创新发展。
DeepSeek-V2.5-GGUF - 大规模语言模型的GGUF量化版本集合适用于本地部署
DeepSeek-V2.5GGUF格式GithubHuggingfaceLLM推理大语言模型开源项目模型量化模型
本项目提供DeepSeek-V2.5模型的多种GGUF量化版本,适合本地部署。量化版本从250GB高精度到61GB轻量,满足不同硬件需求。项目详述各版本特点、大小和用途,并附选择指南。用户可依据硬件条件和性能需求,选择合适的量化版本,实现大规模语言模型的高效本地部署。
aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
NoromaidxOpenGPT4-2-GGUF-iMatrix - 模型融合提升性能与灵活性
GithubHuggingfaceInstruct模型NoromaidxOpenGPT4开源项目模型模型合并非商业用途高性能
NoromaidxOpenGPT4-2通过合并Noromaid-8x7b-Instruct和Open_Gpt4_8x7B_v0.2模型,提升了性能和灵活性。与早期版本相比,新版本基于Open_Gpt4_8x7B_v0.2,采用TIES合并方法。用户可以下载imatrix文件进行额外量化操作。独特的方法使每个版本都有其特定优势。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
Gemma-2-9B-Chinese-Chat - 首个专为中英文用户优化的指令调优模型
Gemma-2-9B-Chinese-ChatGithubHuggingfaceroleplaying中文学习工具使用开源项目模型语言模型
Gemma-2-9B-Chinese-Chat是基于Google Gemma-2-9b-it的指令调优语言模型,适用于中文和英文用户。通过ORPO优化算法和10万对偏好数据进行微调,提升了角色扮演、工具使用等能力,减少中文提问英文回答的问题,改善中英文混杂现象。该模型支持多种场景应用,如模拟对话、数学运算、文字创作等,并提供GGUF文件和ollama模型的下载与使用,以及于Hugging Face存储库的下载和在线演示。
rulm - 俄语语言模型:的实现与性能对比
GPT Role-play RealmGithubRuTurboAlpacaRussianSuperGLUESaigarulm开源项目
此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。
NeuralLLaMa-3-8b-DT-v0.1 - 结合多模型优势的文本生成解决方案,增强任务表现
GithubHuggingfaceLazyMergekitNeuralLLaMa-3-8b-DT-v0.1准确率开源项目文本生成模型模型合并
NeuralLLaMa-3-8b-DT-v0.1 是一种通过融合ChimeraLlama-3-8B-v2、llama-3-stella-8B和llama-3-merged-linear等模型,借助LazyMergekit技术,提升了文本生成任务精确度的开源项目。适用于0-Shot和多次尝试测试,表现出出色的任务表现,严格准确率达43.71%。项目易于集成,支持多种量化配置,适合多种平台应用。
MIstral-QUantized-70b_Miqu-1-70b-iMat.GGUF - 优质法语对话能力的70B模型,适用于大容量VRAM
GithubHuggingfaceMiqu 1 70bMistral AI上下文大小开源项目模型法语量化
Miqu 1 70b是Mistral Medium Alpha的一个模型,由Mistral AI公司开发,适合法语使用者。该模型在法语对话中表现出色,智能性能与精调的Llama 2 70b相当,并倾向于避免过拟合。Miqu提供多种量化格式,Q4_K_S和Q3_K_M在48GB和36GB VRAM上支持完全卸载,满足大容量VRAM用户需求。虽然Miqu与CodeLlama 70b有相同的100万theta值,但在实验中证明其最大上下文能力为32k,相较于4k更具优势,并提供较低的周转率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号