Project Icon

nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf

Mistral-NeMo-Minitron-8B-Base模型实现高效自然语言生成

NVIDIA 的 Mistral-NeMo-Minitron-8B-Base 模型运用压缩和蒸馏技术,为自然语言生成任务提供解决方案。该模型通过修剪和蒸馏 Mistral-NeMo 12B,在 3800 亿个词标中完成训练,适用于多领域文本转换,并支持 NeMo 24.05 引擎,兼容 NVIDIA 多种硬件架构。

Mistral-7B-Instruct-v0.2-GPTQ - 高效量化的开源指令型大语言模型
AI推理GPTQGithubHuggingfaceMistral 7B开源项目模型模型下载量化模型
Mistral-7B-Instruct-v0.2模型的GPTQ量化版本,提供4位和8位精度等多种参数选项。支持Linux和Windows的GPU推理,兼容多个开源框架。采用Mistral提示模板,适用于指令任务。由TheBloke量化发布,旨在提供高效易用的开源大语言模型。
Mistral-7B-OpenOrca-GPTQ - Mistral语言模型的GPTQ量化优化实现
GPTQ量化GithubHuggingfaceMistral-7B开源项目模型模型部署深度学习自然语言处理
本项目对Mistral-7B-OpenOrca模型进行GPTQ量化处理,提供4位和8位精度、多种分组大小的量化版本。通过优化存储和计算方式,在保持模型性能的同时大幅降低显存占用。项目支持text-generation-webui、Python等多种调用方式,并提供完整的使用文档。
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF - 结合多模型的量化文本生成引擎
GithubHuggingfaceNSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1transformers开源项目文本生成模型模型合并量化
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF是利用llama.cpp开发的量化模型,整合了mistralai和athirdpath的两款7B模型。通过slerp合并法和bfloat16数据类型,该项目优化了文本生成任务的性能。用户可以通过Transformers和Accelerate库在Python中完成文本生成。该模型结合了多模型的优点,专为处理复杂文本生成任务而设计,提供了高效的运行性能。
Mixtral-8x22B-v0.1 - 多平台兼容的预训练大规模语言模型
GithubHugging FaceHuggingfaceMistral AIMixtral-8x22B开源项目模型生成模型语言模型
这是一款多语言兼容的预训练大型语言模型,支持生成性稀疏专家技术,兼容vLLM和Hugging Face transformers库,提供灵活的运行选项和优化内存管理的优势。然而,用户需注意,该模型没有内容审核功能。
Mistral-Nemo-Instruct-2407-FP8 - FP8量化技术在模型优化与部署中的应用
GithubHuggingfaceMistral-Nemo-Instruct-2407-FP8开源项目模型模型优化评估部署量化
Mistral-Nemo-Instruct-2407-FP8通过FP8量化技术提升了模型的内存和体积效率,主要用于商业和研究。该模型适用于英语聊天助手,利用参数位数的减少节省约50%的资源。结合vLLM>=0.5.0的高效推理环境,优化部署性能。量化由AutoFP8完成,Neural Magic计划转向支持更多方案的llm-compressor。尽管量化后某些评测得分略有下降,但保持的性能恢复率使其成为资源效率化的优选方案。
neural-chat-7b-v3-1 - 在英特尔Gaudi2上优化的mistralai 7B语言模型
GithubHuggingfaceIntel Gaudi 2大语言模型开源项目数据集模型模型微调量化推理
neural-chat-7b-v3-1模型经过优化,利用mistralai/Mistral-7B-v0.1基础模型和DPO方法,适用于多种语言任务。结合Open-Orca/SlimOrca数据集,提升了ARC、HellaSwag与TruthfulQA等多项评估指标表现,并支持INT4、BF16等多种推理模式。非常适合高性能语言生成与处理应用,详细信息和使用指导可在GitHub和Hugging Face Leaderboard上查看。
Mistral-7B-Instruct-v0.3-AWQ - Mistral模型AWQ量化版支持高级函数调用和三代分词
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3大语言模型开源项目模型模型量化自然语言处理
作为Mistral-7B-Instruct-v0.3的AWQ量化版本,该模型采用4比特压缩技术,在提供快速推理性能的同时保持了原有精度。通过扩展词汇表和引入第三代分词技术,增强了模型的理解能力。目前已集成到主流AI框架平台,可在搭载NVIDIA显卡的Linux或Windows系统上运行。
Mistral-7B-Instruct-v0.1-GPTQ - Mistral-7B-Instruct量化模型 多种精度选项
AI模型GPTQ量化GithubHuggingfaceMistral大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1模型的GPTQ量化版本提供4位和8位精度等多种参数选项。量化后的模型体积显著减小,性能基本不变,适合消费级GPU推理。支持通过ExLlama或Transformers加载,可用于高效文本生成。用户可根据硬件和需求选择合适版本。
TinyMistral-248M - 使用小规模数据集进行高效模型预训练
GithubHuggingfaceMistral 7B参数开源项目微调模型评估结果语言模型
TinyMistral-248M基于Mistral 7B模型,参数减少至约2.48亿,专为下游任务微调设计。预训练使用了748.8万个实例,支持文本生成功能,拥有约32,768个token的上下文长度。模型在InstructMix评估中的平均困惑度为6.3,未来将在多数据集上增加训练周期,验证无需大数据集即可进行有效预训练的可能性,并在多个指标测试中表现良好。
Mistral-7B-Instruct-v0.2-llamafile - 高效多功能的开源语言模型
AI模型GithubHuggingfaceMistral-7B-Instruct-v0.2大型语言模型开源项目指令微调模型自然语言处理
Mistral-7B-Instruct-v0.2是Mistral AI公司开发的改进版指令微调语言模型,拥有70亿参数。该模型支持多种量化格式和llamafile格式,可在CPU和GPU上高效运行,适用于对话、文本生成等多种场景。用户可根据设备选择合适的量化版本,通过命令行或Python代码轻松使用。模型在多项任务中表现优异,为开发者和研究者提供了强大的开源语言处理工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号