Project Icon

nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf

Mistral-NeMo-Minitron-8B-Base模型实现高效自然语言生成

NVIDIA 的 Mistral-NeMo-Minitron-8B-Base 模型运用压缩和蒸馏技术,为自然语言生成任务提供解决方案。该模型通过修剪和蒸馏 Mistral-NeMo 12B,在 3800 亿个词标中完成训练,适用于多领域文本转换,并支持 NeMo 24.05 引擎,兼容 NVIDIA 多种硬件架构。

Mistral-Nemo-Instruct-2407-GGUF - Mistral Nemo多语言指令模型的量化版本
GGUFGithubHuggingfaceMistral-Nemo-Instruct-2407大语言模型开源项目机器学习模型量化模型
Mistral-Nemo-Instruct-2407模型的GGUF量化实现,包含从Q2到Q8多个量化等级,文件大小范围为4.9GB至13.1GB。模型原生支持英语、法语、德语等8种语言,基于Apache 2.0协议开源。项目提供了各量化版本的性能对比数据及使用文档,便于在性能和资源消耗间做出合适选择。
Ministral-8B-Instruct-2410 - 多功能高效语言模型,兼具多语言和代码处理能力
GithubHuggingfaceMinistral-8B-Instruct-2410Mistral AI开源项目授权使用模型研究目的许可证
Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。
Mistral-7B-Instruct-v0.3-GGUF - 高性能量化版指令微调大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.3大型语言模型开源项目提示模板模型硬件要求量化
Mistral-7B-Instruct-v0.3 GGUF是一系列针对不同硬件条件优化的量化模型。支持32k上下文长度、扩展词表和函数调用,适用于对话等交互任务。模型大小从2.72GB到14.5GB不等,提供多种精度选择,平衡性能和资源消耗。GGUF格式便于在各类设备上高效部署和使用。
Mistral-7B-Instruct-v0.1-AWQ - AWQ量化优化的Mistral-7B指令模型 支持GPU加速推理
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.1人工智能大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1-AWQ是基于Mistral AI开源的指令微调语言模型,经过AWQ 4位量化优化。该模型保留了原版的分组查询注意力和滑动窗口注意力等特性,同时大幅降低了模型大小,提升了GPU推理速度。它支持处理4096个token的长文本输入,适合需要高效部署的应用场景。开发者可以通过Python接口便捷地使用该模型进行文本生成。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
h2o-danube3-500m-base - 500M参数的大规模语言模型,支持离线文本生成
GPTGithubH2O.aiHuggingface大语言模型开源项目模型模型架构转化器
由H2O.ai推出的h2o-danube3-500m模型,是一个大规模语言模型,采用Llama 2架构调整及500M参数设计。模型支持原生离线运行,尤其适用于手机设备,并集成Mistral分词器,拥有32,000词汇量及8,192长度的上下文生成能力。在支持transformers库的环境中,模型可在GPU设备上有效运行,并且支持量化和多GPU分片处理。重要提醒用户在使用模型生成的内容时保持审慎态度并自行承担责任。
Mistral-7B-v0.1-GGUF - 多平台支持的GGUF格式模型文件,提升推理效率
GPU加速GithubHuggingfaceMistral 7B v0.1开源模型开源项目文本生成模型量化方法
Mistral AI发布的Mistral 7B v0.1模型以GGUF格式支持多种文本生成任务。此格式由llama.cpp团队开发,替代旧的GGML格式,兼容多平台和库,包括支持GPU加速的text-generation-webui、KoboldCpp和LM Studio等。项目提供多样的量化模型文件,适配不同推理需求,保证了启发式使用中的高效性能。用户可通过简单的下载及命令行操作获取模型,并支持Python等语言的集成,为文本生成任务提供了高性能的解决方案。
Mistral-7B-Instruct-v0.3-GPTQ - Mistral 7B指令模型的4位量化优化版本
GPTQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3函数调用大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.3是一个经过GPTQ 4位量化的语言模型。基于Mistral-7B-v0.3开发,集成了32768词汇量、v3分词器和函数调用功能。模型可用于创意写作等任务,但由于缺少内容审核机制,在应用环境选择上需要谨慎评估。
Mistral-7B-Instruct-v0.3-GPTQ-4bit - Mistral-7B指令模型的4位量化版本 保持高准确率
GPTQGithubHuggingfaceMistral-7B-InstructvLLM开源项目模型自然语言处理量化模型
Mistral-7B-Instruct-v0.3-GPTQ-4bit是Mistral-7B指令模型的4位量化版本。通过GPTQ技术,该模型在大幅缩小体积的同时,保持了原模型99.75%的准确率。在多项基准测试中,该模型平均准确率达65.05%。它兼容vLLM优化推理,可作为高效的自然语言处理服务器部署。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号