Project Icon

FinTwitBERT-sentiment

基于BERT的金融推文情感分析工具

FinTwitBERT-sentiment基于1000万条金融推文预训练的FinTwitBERT模型开发,通过38,091条人工标注数据和142万条合成数据进行微调,专注于分析社交媒体金融文本的情感倾向。此模型支持通过Hugging Face transformers库集成,适用于金融推文和相关社交媒体内容的情感分析任务。

bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
GithubHuggingfacePyTorch Lightningbert-base-uncased-emotion开源项目情感分析情感类别数据集模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。
distilbert-base-uncased-finetuned-sst-2-english - 基于SST-2数据集微调的DistilBERT情感分析模型达到91.3%分类准确率
DistilBERTGithubHuggingfaceSST-2开源项目文本分类机器学习模型模型偏见
这是一个在SST-2数据集上微调的DistilBERT情感分析模型,通过优化学习参数实现91.3%的分类准确率。模型支持英文文本的情感二分类,但在处理不同国家相关文本时存在潜在偏见。作为一个轻量级BERT变体,该模型在保持性能的同时显著降低了计算资源需求。
finbert-esg-9-categories - FinBERT-ESG九分类模型 企业可持续发展报告智能分析工具
ESG分析FinBERTGithubHuggingface企业治理开源项目模型气候变化金融文本分析
FinBERT-ESG九分类模型是一款专业的企业可持续发展报告分析工具。该模型基于14,000个人工标注的ESG报告和年度报告样本训练而成,能够将文本准确分类为气候变化、自然资本、污染与废物等9个细分ESG主题。这一工具有助于投资者评估企业长期可持续性并识别相关风险,为金融文本分析提供了重要支持。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
distilbert-base-uncased-emotion - DistilBERT情感分析模型:小巧快速且准确
DistilBERTGithubHugging FaceHuggingface开源项目情感分析文本分类模型自然语言处理
这是一个基于DistilBERT的情感分析模型,体积比BERT小40%,速度更快,同时保持93.8%的准确率。模型可将文本分类为6种情感,每秒处理398.69个样本,性能优于BERT、RoBERTa和ALBERT同类模型。该模型采用情感数据集微调,通过简单pipeline即可快速部署使用。
bertweet-tb2_ewt-pos-tagging - Twitter词性标注模型,提升标注准确性
GithubHuggingfaceTweebankNLPTweetTokenizerTwitter开源项目模型社交媒体分析词性标注
该项目提供了适用于Tweebank V2基准的Twitter词性标注模型,准确率达95.38%,结合Tweebank-NER与English-EWT数据进行训练,支持社交媒体分析。使用前需通过TweetTokenizer进行tweets预处理以获得最佳效果。
distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
ESG-BERT - ESG-BERT模型提升可持续投资领域的文本分析能力
BERT模型ESG-BERTGithubHuggingface可持续投资开源项目文本挖掘模型自然语言处理
ESG-BERT是针对可持续投资领域优化的BERT模型。在非结构化文本数据上的训练使其在下一句预测和掩码语言建模任务中表现出色。文本分类任务中,ESG-BERT的F1分数达0.90,超越通用BERT模型和传统机器学习方法。这一模型为可持续投资领域的自然语言处理任务提供了有力支持,显著提升了ESG相关文本分析效果。
sentiment-roberta-large-english-3-classes - 基于RoBERTa的英文情感分析模型,精确分类社交媒体情感
GithubHuggingfaceRoBERTa准确率开源项目情感分析模型社交媒体
该模型使用RoBERTa进行三类情感分类(正面、中性、负面),特别适合社交媒体文本。通过5,304条社交媒体帖子进行微调,达到了86.1%的准确率。可通过transformers库轻松集成,提高文本分类的精准性和效率。
t5-base-finetuned-span-sentiment-extraction - 基于T5的文本情感关键词提取模型
GithubHuggingfaceT5开源项目情感分析文本提取机器学习模型自然语言处理
基于Google T5模型的情感跨度提取(Sentiment Span Extraction)微调项目,通过识别文本中表达情感的关键词或短语,实现社交媒体文本分析。项目使用Tweet Sentiment Extraction数据集训练,支持提取积极、消极或中性情感判断的文本片段,可应用于品牌监测和情感分析场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号