Project Icon

bengali_language_NER

在Wikiann数据集上使用多语言BERT模型微调,实现孟加拉语实体识别

该项目使用Wikiann数据集微调bert-base-multilingual-cased模型,实现孟加拉语命名实体识别。标签分类涵盖人物、组织、地点,高训练集F1分数达0.9979,测试集为0.9673,并提供实例代码,适合研究语言处理与语义分析的用户。

heBERT_NER - HeBERT: 专为希伯来语设计的命名实体识别和情感分析模型
GithubHeBERTHuggingface命名实体识别开源项目情感分析情感识别情绪用户生成内容模型
HeBERT是一个基于Google BERT架构的希伯来语模型,通过希伯来语OSCAR、维基百科以及情感用户生成内容数据集进行训练。它能够识别希伯来语文本中的人名、组织和地理位置等命名实体,并在测试中表现出色。此外,HeBERT还支持情感识别和情绪分析,研究人员和开发者可以在Huggingface平台上访问此模型。该工具适合需要进行深入希伯来语文本分析的用户。
pytorch-bert-crf-ner - PyTorch实现的BERT-CRF韩文命名实体识别器
BERTCRFGithubKoBERTNERPytorch开源项目
该项目是一个用PyTorch实现的BERT和CRF结合的韩文命名实体识别器,适用于PyTorch v1.2及Python 3.x环境。通过实际案例和详细日志展示该识别器的使用方法及其高效的韩文命名实体识别能力。借助于SKTBrain的KoBERT模型,本项目实现了容易上手的BERT-CRF命名实体识别系统。
quote-model-BERTm-v1 - BERT多语言模型在引用识别任务上的高性能微调应用
BERTGithubHuggingface多语言模型开源项目文本分类机器学习模型自然语言处理
quote-model-BERTm-v1是一个基于BERT多语言模型微调的引用识别工具。该模型在评估集上表现优异,准确率达93.14%,F1分数为0.8676。通过Adam优化器和线性学习率调度器,经过3轮训练而成。这一模型专门用于多语言环境下的高精度引用识别,可广泛应用于需要处理多语种文本引用的场景。
bert-base-uncased-conll2003 - 基于BERT的CoNLL-2003数据集命名实体识别模型
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目模型模型微调自然语言处理
此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。
bert-base-chinese-ner - 传统中文BERT模型及自然语言处理工具
CKIP BERTGithubHuggingfacetransformers模型命名实体识别开源项目模型繁體中文自然语言处理
该项目提供传统中文BERT等模型和多功能自然语言处理工具,辅助词性标注、分词和实体识别。建议使用BertTokenizerFast以提高性能。CKIP开发和维护,详情使用说明见GitHub页面。
bert-ner-japanese - 日本语固有表达识别,使用BERT模型实现
BERTGithubHuggingface固有表现抽取开源项目日本机器学习模型自然语言处理
本项目利用BertForTokenClassification模型,实现高效的日本语固有表达识别,可识别八种类别,如人名、法人名和地名等,以满足多样化的语言处理需求。该项目基于东北大学的日本语BERT模型和stockmarkteam的Wikipedia数据集进行训练,通过安装transformers库等,即可实现快速识别,适合应用于IT和学术研究领域的文本分析。
IndicBERTv2-MLM-only - 支持23种印度语言和英语的大规模多语言预训练模型
GithubHuggingfaceIndicBERT印度语言多语言模型开源项目机器学习模型自然语言处理
IndicBERTv2-MLM-only是一个支持23种印度语言和英语的大规模多语言预训练模型。该模型基于IndicCorp v2数据集训练,包含2.78亿参数,采用掩码语言模型(MLM)目标。在IndicXTREME基准测试中,模型展现出优秀的多语言和零样本迁移能力。作为印度语言自然语言处理的重要资源,IndicBERTv2-MLM-only有望推动相关研究,缩小印度语言在NLP领域的差距。
bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
distilcamembert-base-ner - 法语命名实体识别模型,推理时间减半
CamemBERTDistilCamemBERT-NERGithubHuggingface实体识别开源项目模型模型优化法语
DistilCamemBERT-NER针对法语命名实体识别进行微调,与CamemBERT相比推理时间缩短一半但能耗保持不变。采用wikiner_fr数据集,综合F1得分达98.18%。在PER、LOC、ORG类别上,性能优于多语种与Flair法语模型,提供高效的文本处理解决方案。
bert-base-multilingual-cased - BERT多语言预训练模型覆盖104种语言
BERTGithubHuggingface多语言模型开源项目模型深度学习自然语言处理预训练
bert-base-multilingual-cased是基于104种语言Wikipedia数据预训练的BERT模型。通过掩码语言建模和下一句预测实现自监督学习,可用于微调多种NLP任务。该模型支持多语言处理,适用于序列分类、标记分类和问答等应用,为NLP研究和开发提供了强大的多语言基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号