Project Icon

bengali_language_NER

在Wikiann数据集上使用多语言BERT模型微调,实现孟加拉语实体识别

该项目使用Wikiann数据集微调bert-base-multilingual-cased模型,实现孟加拉语命名实体识别。标签分类涵盖人物、组织、地点,高训练集F1分数达0.9979,测试集为0.9673,并提供实例代码,适合研究语言处理与语义分析的用户。

bangla-bert-base - 预训练孟加拉语模型,增强自然语言处理效果
Bangla-BertGithubHuggingface孟加拉语开源项目模型自然语言处理评估结果预训练语言模型
Bangla BERT Base是一款为孟加拉语开发的预训练语言模型,现已在Hugging Face平台上可用。该模型通过BERT的Masked Language Modeling进行训练,使用来自Bengali Commoncrawl和Wikipedia的语料库,并借助BNLP包进行词汇表构建。採用了bert-base-uncased架构,共有12层、768个隐藏单元、12个注意力头和110M参数。经过100万步训练,它在情感分析、仇恨言论检测和新闻分类等下游任务中表现突出,与多语言BERT和Bengali Electra相比,提高了精度。尤其是在Bengali NER任务中,评估结果相对优秀。该模型已经被应用于多项研究,是处理孟加拉语NLP任务的可靠工具。
bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
bert-base-multilingual-cased-ner-hrl - 基于mBERT的多语言命名实体识别模型覆盖10种主要语言
GithubHugging FaceHuggingfacebert-base-multilingual-cased命名实体识别多语言模型开源项目模型自然语言处理
bert-base-multilingual-cased-ner-hrl是一个多语言命名实体识别模型,基于mBERT微调而来。该模型支持阿拉伯语、德语等10种主要语言,能够识别地点、组织和人名。模型通过聚合多语种新闻数据集训练,适用于广泛的NER任务,但在特定领域可能存在局限性。使用简单,可通过Transformers库快速部署。模型可通过Hugging Face的Transformers库轻松集成到各种NLP项目中,适用于多语言文本分析、信息提取等任务。然而,由于训练数据限制,在非新闻领域的表现可能需要进一步评估。
arabic-ner - 阿拉伯语BERT命名实体识别模型支持九大类型
BERTGithubHugging FaceHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语
该阿拉伯语命名实体识别模型基于BERT预训练,可识别9种实体类型,包括人名、组织、地点等。模型使用37.8万标记的语料训练,在3万标记验证集上F1分数达87%。项目提供完整示例,适用于多种阿拉伯语自然语言处理任务。
distilbert-base-multilingual-cased-ner-hrl - DistilBERT微调的10语种命名实体识别模型
DistilBERTGithubHugging FaceHuggingface命名实体识别多语言模型开源项目模型自然语言处理
这是一个基于DistilBERT微调的多语言命名实体识别模型,支持10种高资源语言。模型能够识别位置、组织和人名实体,适用于阿拉伯语、德语、英语等多种语言。它使用各语言的标准数据集训练,可通过Transformers库轻松调用。尽管在多语言NER任务中表现优秀,但在特定领域应用时可能存在局限性。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
bert_cased_ner - BERT模型驱动的土耳其语命名实体识别工具
BertTurkGithubHuggingfaceMilliyetNER命名实体识别土耳其语开源项目模型自然语言处理
项目开发了一个专门用于土耳其语的BERT命名实体识别模型。该模型基于MilliyetNER新闻语料库训练,可识别人名、地点和组织三类实体。模型表现优异,测试集F1得分达0.96。提供简洁的Python接口,方便研究者和开发者在土耳其语自然语言处理任务中应用。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号