Project Icon

CogVideoX-5b-I2V

开源图像到视频生成模型支持多种精度和量化推理

CogVideoX-5b-I2V是一个开源的图像到视频生成模型,参数规模为5B。该模型可生成6秒长、8帧/秒、720x480分辨率的视频,支持多种精度和量化推理。通过diffusers库可快速部署,单GPU运行时内存占用较低。模型提供量化推理功能,适用于小内存GPU,并可通过torch.compile加速。

CogVideoX-5b - 专家Transformer驱动的先进文本到视频生成模型
CogVideoXGithubHuggingface人工智能开源项目扩散模型文本到视频模型视频生成
CogVideoX-5b是基于专家Transformer的文本到视频生成模型。它可生成6秒720x480分辨率、8帧/秒的视频,支持226个token的英文提示输入。模型采用BF16精度,推理VRAM消耗低至5GB。通过多项优化,CogVideoX-5b在保持视觉质量的同时提高了推理速度,为视频生成研究与应用提供了有力工具。
CogVideoX-2b - 轻量级开源视频生成模型支持低显存推理
CogVideoXGithubHuggingface人工智能开源项目扩散模型文本到视频模型视频生成
CogVideoX-2B是一个基于扩散模型的开源视频生成工具。该模型可将文本描述转化为6秒长、720x480分辨率、8帧/秒的视频。其最低仅需4GB显存即可运行,通过INT8量化还可进一步降低资源消耗。作为入门级选择,CogVideoX-2B在性能和资源使用间取得平衡,适合进行二次开发。模型目前支持英文输入,并提供多种优化方案以提升推理速度和降低显存占用。
CogVideo - 开源视频生成模型,支持高效单GPU推理
CogVideoXGithubICLR'23开源项目文本到视频视频生成
CogVideoX和CogVideo通过大规模预训练模型和3D因果VAE技术,实现高质量的文本到视频生成。CogVideoX-2B可在单个3090 GPU上进行推理,生成效果几乎无损。提供详尽的快速入门指南、模型结构介绍和使用案例。探索CogVideoX和CogVideo在Huggingface、WeChat、Discord等平台上的应用,获取更多技术细节和更新。
stable-video-diffusion-img2vid - AI模型将静态图像转换为动态短视频的创新技术
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是一种先进的AI模型,可将静态图像转化为短视频。该模型利用潜在扩散技术,生成14帧、576x1024分辨率的视频片段。在视频质量方面表现出色,主要应用于生成模型研究和安全部署等领域。尽管存在视频时长短、可能缺乏动作等限制,但该模型为图像到视频转换技术带来了新的可能性。目前仅限于研究用途,不适用于生成事实性或真实性内容。
stable-video-diffusion-img2vid-xt-1-1 - 高性能图片转视频生成模型,支持1024x576像素视频制作
GithubHuggingfaceStable Video Diffusion人工智能模型商业授权图像转视频开源项目模型生成式AI
Stable Video Diffusion 1.1是Stability AI开发的图像生成视频AI模型,基于SVD Image-to-Video [25 frames]优化而来。它可将单张图片转换为25帧、1024x576分辨率的短视频,采用6FPS帧率和Motion Bucket Id 127参数,输出效果比1.0版本更稳定。该模型适用于艺术创作、教育等领域,支持非商业和商业用途。用户可通过Stability AI的generative-models仓库获取和使用该模型。
stable-video-diffusion-img2vid-xt - 图像到视频转换模型Stable Video Diffusion实现动画生成
GithubHuggingfaceStable Video Diffusion人工智能图像到视频生成开源项目模型深度学习计算机视觉
Stable Video Diffusion Image-to-Video是Stability AI开发的扩散模型,可将静态图像转换为短视频。该模型生成25帧、576x1024分辨率的视频片段,视频质量优于同类产品。适用于艺术创作、教育工具等场景,支持商业和非商业用途。模型存在视频较短、不支持文本控制等局限性。开发者可通过GitHub上的开源代码使用该模型。
stable-video-diffusion-img2vid-xt-1-1 - 从图像生成视频的扩散模型的稳定性
GithubHuggingfaceStable Video Diffusion开源项目模型研究用途规定条件视频生成非商业用途
Stable Video Diffusion 1.1 是一款专为研究用途而设计的图像到视频生成模型,通过优化固定条件和运动配置,实现了更一致的视频输出。该模型可以从单张图像生成25帧、分辨率为1024x576的视频片段,但不适用于精确表现真实人物或事件,且不能通过文本进行控制。在探讨生成模型的局限性和偏见时,该模型表现出色。欲了解更多信息,请访问 Stability AI 的 GitHub 仓库。
cogvlm2-llama3-caption - 视频转文本方案,助力优化文本-视频模型训练
CogVLM2-CaptionGithubHuggingfacePyTorch开源项目模型视频描述视频转文本训练数据生成
CogVLM2-Llama3-Caption项目专注于将视频数据转换为文本描述,为文本-视频模型提供关键训练数据。利用先进的视频解码和文本生成技术,该工具支持精确视频转录,为包括CogVideoX在内的模型生成高质量训练素材。该模型结合了Transformer技术和灵活处理策略,可在CUDA设备上高效运行,帮助开发者高效进行视频内容分析。
VideoBooth - 基于图像提示的AI视频生成新突破
GithubVideoBooth人工智能图像提示开源项目扩散模型视频生成
VideoBooth是一个AI视频生成项目,利用扩散模型技术基于图像提示创建视频。该项目将静态图像主体转化为动态视频,实现图像到视频的转换。VideoBooth采用两阶段训练方法,提供安装、推理和训练指南。项目还公开了专门数据集,为研究提供资源。
text-to-video-ms-1.7b - 多阶段扩散模型实现文本到视频的智能转换
GithubHuggingfaceModelScopediffusion modeltext-to-video人工智能开源项目模型视频生成
text-to-video-ms-1.7b是一个基于多阶段扩散模型的文本到视频生成系统。该模型可将英文文本描述转化为匹配的视频内容,由三个子网络组成,总参数约17亿。支持长视频生成,适用于多种创意应用场景。目前仅支持英语输入,且存在无法生成清晰文本等局限性。该模型仅供研究用途,使用时应注意避免生成不当或有害内容。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号