Project Icon

LongCite-llama3.1-8b

LongCite-llama3.1-8b在长上下文问答中实现高效引用生成

LongCite-llama3.1-8b是基于Meta-Llama-3.1-8B训练的开源模型,专为长上下文问答中的引用生成而设计,支持128K标记的上下文窗口。项目采用transformers库,提供了Python示例代码用于展示模型部署与应用,并建议使用torch的bfloat16数据类型及自动设备映射功能。vllm项目的示例代码可供进一步探索高效部署模型。

项目介绍:LongCite-llama3.1-8b

LongCite-llama3.1-8b是一个经过专门训练的语言模型,基于Meta-Llama-3.1-8B开发。该模型特别擅长在长文本背景中生成精细化引文,适用于长上下文的问答任务。模型支持的最大上下文窗口可达到12.8万标记(tokens),这使得它在处理长文档时具有很强的能力。

背景和数据集

该项目使用的是由THUDM(清华大学数据挖掘中心)提供的LongCite-45k数据集。LongCite-45k是一个包含大量例子的问答数据集,专门用于训练和评估在复杂文本情境下的引文生成能力。

模型实现和运行环境

LongCite-llama3.1-8b模型在transformers库上实现,其环境需求为transformers>=4.43.0。用户可以使用Python进行简单的模型部署和调用。以下是一个简要的使用示例:

import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('THUDM/LongCite-llama3.1-8b', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('THUDM/LongCite-llama3.1-8b', torch_dtype=torch.bfloat16, trust_remote_code=True, device_map='auto')

context = '''
W. Russell Todd, 94, United States Army general (b. 1928). February 13. Tim Aymar, 59, heavy metal singer (Pharaoh) (b. 1963). Marshall \"Eddie\" Conway, 76, Black Panther Party leader (b. 1946). Roger Bonk, 78, football player (North Dakota Fighting Sioux, Winnipeg Blue Bombers) (b. 1944). Conrad Dobler, 72, football player (St. Louis Cardinals, New Orleans Saints, Buffalo Bills) (b. 1950). Brian DuBois, 55, baseball player (Detroit Tigers) (b. 1967). Robert Geddes, 99, architect, dean of the Princeton University School of Architecture (1965–1982) (b. 1923). Tom Luddy, 79, film producer (Barfly, The Secret Garden), co-founder of the Telluride Film Festival (b. 1943). David Singmaster, 84, mathematician (b. 1938).
'''
query = "What was Robert Geddes' profession?"
result = model.query_longcite(context, query, tokenizer=tokenizer, max_input_length=128000, max_new_tokens=1024)

print("Answer:\n{}\n".format(result['answer']))
print("Statement with citations:\n{}\n".format(
  json.dumps(result['statements_with_citations'], indent=2, ensure_ascii=False)))
print("Context (divided into sentences):\n{}\n".format(result['splited_context']))

其他实现选项

除了通过transformers库进行部署,用户还可以结合vllm项目来使用该模型。在vllm_inference.py文件中有相关的代码示例,供参考使用。

使用许可

LongCite-llama3.1-8b的使用遵循Llama-3.1许可证

如何引用

如果该项目对您的研究有帮助,请在引用时注明:

@article{zhang2024longcite,
  title = {LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA} 
  author={Jiajie Zhang and Yushi Bai and Xin Lv and Wanjun Gu and Danqing Liu and Minhao Zou and Shulin Cao and Lei Hou and Yuxiao Dong and Ling Feng and Juanzi Li},
  journal={arXiv preprint arXiv:2409.02897},
  year={2024}
}

通过这一项目,用户能够利用先进的自然语言处理技术进行更加精确和有效的长文档问答,实现创新的知识引用和传播。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号