Project Icon

P-tuning-v2

深度提示调优技术提升小型模型性能 媲美传统微调方法

P-tuning v2是一种创新的提示调优策略,通过深度提示调优技术为预训练Transformer的每层输入应用连续提示。这种方法显著提升了连续提示的容量,有效缩小了与传统微调方法的性能差距,尤其在小型模型和复杂任务中表现突出。研究表明,P-tuning v2在BERT和RoBERTa等模型上取得了优异成果,在多项NLP任务中达到了与微调相当的水平,为发展参数高效的模型调优技术开辟了新途径。

gpt2-imdb - 利用IMDB电影评论数据集微调的GPT-2模型
Adam优化器GithubHuggingfacegpt2-imdb学习率开源项目数据集模型训练超参数
该项目基于IMDB数据集对GPT-2模型进行微调,以增强情感分析的准确性。训练中采用Adam优化器和线性学习率调度器,学习率设置为5e-05。框架使用了Transformers 4.26.1、Pytorch 1.13.1和Datasets 2.9.0等技术,以有效提高深度学习训练。这款模型通过微调,提升了对电影评论数据集的处理能力,从而在情感分类任务中表现更加出色。
DeepSeek-V2 - 兼顾效率与经济性的大规模混合专家语言模型
DeepSeek-V2Github大语言模型开源项目混合专家模型自然语言处理预训练模型
DeepSeek-V2是一款基于专家混合(MoE)架构的大规模语言模型,总参数量达2360亿,每个token激活210亿参数。相较于DeepSeek 67B,该模型在提升性能的同时,显著降低了训练成本和推理资源消耗。DeepSeek-V2在多项标准基准测试和开放式生成任务中表现优异,展现了其在多领域的应用潜力。
gpt-fast - PyTorch原生高效文本生成项目
GithubPyTorchgpt-fast开源项目性能优化文本生成模型量化
gpt-fast是一个基于PyTorch的高效Transformer文本生成项目,代码精简(<1000行Python),仅依赖PyTorch和sentencepiece。项目特点包括极低延迟、int8/int4量化、推测解码和张量并行,支持NVIDIA和AMD GPU。gpt-fast不是框架或库,而是展示原生PyTorch性能的示例。它支持LLaMA系列和Mixtral 8x7B等模型,提供详细基准测试和多种优化技术。该项目实现了高效的文本生成,展现了PyTorch在AI领域的强大性能。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
a-PyTorch-Tutorial-to-Transformers - PyTorch实现Transformer模型的详细教程与实践指南
GithubPyTorchTransformer开源项目机器翻译注意力机制编码器-解码器架构
本项目提供了一个基于PyTorch的Transformer模型实现教程。教程深入讲解了Transformer的核心概念,如多头注意力机制和编码器-解码器架构,并以机器翻译为例展示应用。内容涵盖模型实现、训练、推理和评估等环节,适合想要深入理解和应用Transformer技术的学习者。
v3_1_pt_ep1_sft_5_based_on_llama3_1_8b_final_data_20241019 - 探索先进的自然语言处理开源模型及其实际应用
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节语言模型
了解先进自然语言处理开源模型的信息,包括用途、评估方法及风险提示。虽然详细信息未完全披露,但以上内容可为开发和应用提供重要参考。
VITS-fast-fine-tuning - 个性化多语言语音合成与转换工具
GithubVITS声音转换多语言开源项目文本转语音语音克隆
VITS-fast-fine-tuning是一个开源的语音合成项目,旨在快速实现个性化的多语言文本转语音和声音转换功能。该工具支持中英日三语合成,允许用户添加自定义声音,并实现角色间的声音转换。项目提供本地训练和Google Colab两种方式,适应不同用户需求。此外,它能从多种音频源(如短音频、长音频、视频和B站链接)克隆声音,为用户提供灵活的声音定制选项。VITS-fast-fine-tuning的微调过程通常只需1小时左右,大大提高了个性化语音模型的开发效率。
1.5-Pints - 快速训练小型语言模型的开源项目
1.5-PintsGithub小型语言模型开源开发开源项目模型架构预训练
1.5-Pints项目提供了一种快速预训练小型语言模型的方法,目标是在9天内达到与知名AI助手相当的水平。该项目开源了模型架构、训练脚本和工具,包含详细的安装指南、数据准备流程、训练和微调方法,以及模型评估和使用说明。研究人员和开发者可以通过这些资源复制实验并进行进一步的开源开发。
FasterTransformer - 基于NVIDIA平台的高性能Transformer编解码器实现与调优
BERTFasterTransformerGPTGithubNVIDIATensorRT-LLM开源项目
FasterTransformer不仅支持多框架集成,还针对NVIDIA新一代GPU优化了编解码性能,极大提升了操作效率和处理速度。包含模型支持、性能对比及API演示的详细文档,有助于用户深入了解并有效使用FasterTransformer。
keras-tuner - 兼具易用性和可扩展性的超参数优化工具
GithubKerasTunerPython 3.8+TensorFlow 2.0+开源项目机器学习模型超参数优化
KerasTuner是一个便捷且可扩展的超参数优化工具,可以有效解决超参数搜索过程中遇到的问题。用户可以通过define-by-run语法轻松配置搜索空间,并使用贝叶斯优化、Hyperband和随机搜索算法找到模型的最佳参数值。该工具对研究人员十分友好,便于进行新搜索算法的实验。KerasTuner适用于Python 3.8+和TensorFlow 2.0+,并提供详细的开发者指南和API参考文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号