BERT Classification Tutorial
はじめに
Googleが2018年に発表したBERTは、その性能の高さや利便性から、今やあらゆる自然言語処理タスクで汎用的に用いられるようになっています。
BERTは事前学習済み言語モデル (Pretrained Language Model) と呼ばれるモデルの一種で、大量のテキストで事前にモデルの学習をおこなっておくことで、様々なタスクに利用できる言語知識を獲得しています。 この言語知識を転用することで、多様なタスクについて、今までよりも少ない学習データで非常に高い性能を発揮できることがわかっています。
BERTをテキスト分類などのタスクに適用する際は、BERTを微調整(fine-tuning)することでタスクを解きます。 例えば、ある映画のレビューが好意的(positive)か否定的(negative)かを分類するタスクを考えると、微調整の流れは以下のようになります。
- レビューテキストを事前学習済みのBERTに入力する
- BERTから得られる出力を用いてpositiveかnegativeかの分類を行う
- 分類タスクにおける損失を計算し、損失をBERTに逆伝播させてBERTのパラメータを更新する
BERTは近年では基盤モデル(Foundation Models)とも呼ばれており、BERTの派生モデルも大量に登場しています。
さて、BERTが登場したのは2018年でした。 当時はRNNやLSTMと呼ばれるモデル構造が主流であり、Transformerと呼ばれるモデル構造をベースにしたBERTは、かなり目新しいものでした。 また、PyTorchなど深層学習用のライブラリもまだまだ発展途上であり、近年までBERTを取り巻く環境は混沌としていました。
しかし、2023年になって、BERTを利用するための環境が非常に整ってきました。 その代表例がHuggingFaceが公開しているTransformersというライブラリです。
Transformersを用いることで、BERTをはじめとする様々な事前学習済みモデルたちを簡単にダウンロード・利用できます。 TransformersはPyTorchやTensorflow, Jax/Flaxといった様々な深層学習用ライブラリと同時に利用できるので、環境を選ばずに事前学習済みモデルたちにアクセスすることができるようになりました。
Transformersの別の良さとしては、事前学習済みモデルのアップロードも簡単であるというのも特筆すべき点です。 これにより、研究や企業応用など、そのユースケースを問わず、様々なモデルをTransformersを通じて簡単にやりとりすることができるようになりました。 いまや誰でも簡単に、自作のBERTをHuggingFaceのサーバ上に公開し、広く一般に使用してもらうことができます。
さて、このようにBERTをはじめとして、事前学習済みモデルを取り巻く環境は極めて急速に整備がされてきました。 しかし、実際にBERTを用いてどのようにタスクを解けば良いか、というのは実はそこまで整備されていません(著者の感想)。
日々更新されていくライブラリ、特に最新のPython, PyTorch, Transformersなどに対応した、BERTを用いてタスクを解くための高品質なテンプレートはほとんど存在しません。
特に自然言語処理の初学者にとっては、「研究や実験をどのように開始したらよいかわからない」「よい設計、実験管理をどのように行えば良いかわからない」というのは非常に苦しいものです。
自然言語処理(に限りませんが)の研究や実験に取り組む際には、理解しやすく、自分が取り組むタスクに比較的近いテンプレート・参考実装が存在することのメリットは計り知れません。
そこで、BERTを用いたテキスト分類をテーマとしたモダンで高品質な深層学習用のテンプレート実装を目指して、本実装を公開します。 具体的には、本実装は「livedoorニュースコーパスをBERTを用いて分類する」流れを実装したものです。
本実装の主要な貢献は以下です。
- Python 3.10, PyTorch 2.0, Transformers 4.30 以上に対応したモダンな記法・実装
- Type Hintsを活用し、出来るだけ依存ライブラリとコード量を減らして、過度な抽象化を避けた見通しのよい設計
- データ準備 → 訓練 & 評価 という実験プロセスの実装指針の提供
- 一般的な評価値の算出を含む実験テンプレートとして、その他のタスクにも簡単に利用できる汎用的な実装
本実装については自然言語処理 30巻 2号に掲載の学会記事でも解説しておりますので、ぜひ併せてご覧ください。 以降の節では、本実装を俯瞰しつつ、主要な項目について述べます。
実装の全体像
本実装は「livedoorニュースコーパスをBERTを用いて分類する」流れを実装したものです。
以下が、本実装の概要図です。
全体としては
- 生データのダウンロード(初回のみ)
- 生データを前処理してJSONL形式の実験用データセットを作成(初回のみ)
- モデルの訓練と評価 という流れになっています。
データの前処理部分は事前に済ませるので、何度も重たい処理をする必要はありません。 また、データを事前に訓練・開発・テストセットに分割するので、様々なモデル・実験条件で比較評価を行いたい場合も、平等な評価(同じ訓練・評価データセットを用いた実験)が可能です。
さらに、本実装ではJupyter NotebookなどNotebook形式のファイルは一切利用していません。 これは経験上、Notebook形式のファイルのデバッグが極めて困難であり、バグの温床になることが多いと感じているためです。
したがって本実装は、ターミナル上でコマンドを実行していれば一連の流れが全て完了するように設計しています。 具体的には、各プログラムがコマンドライン引数を受け取るようになっており、プログラムの挙動を変更するために、プログラムを変更する必要はないように実装しています。
以降の節で詳しく説明しますが、本実装では以下のコマンドを実行すれば、環境構築・データセット作成・訓練&評価の全てが行えるようになっています(コマンドを実行するディレクトリはプロジェクトルート、つまり、src
ディレクトリやrun.sh
ファイルがあるディレクトリを想定しています)。
poetry install
bash src/download.sh
poetry run python src/prepare.py
poetry run python src/train.py
それでは、それぞれの要素について説明します。
環境構築, Installation
まず、環境構築について説明します。
本実装はPython 3.10 以上 での実行を想定しています。 Python 3.10は、match文の導入やwith文の改善など様々な利便性の向上がなされている他、Pythonが高速化の計画を進めていることもあり、早い段階で新しいPythonに適応しておくことのメリットは大きいと考えたためです。
また、Python 3.10では、Type Hints (型注釈)が以前のバージョンより自然に書けるようになっており、今までよりも堅牢かつ可読性の高いコードを書きやすくなっています。 そのため、公開実装のためのPythonとしても優れていると考えました。
次に、Pythonの環境を構築する上でおすすめの方法を2つ紹介するので、どちらか好きな方で環境構築をしてみてください。
1. Install with poetry
1つめの環境構築法は、PythonパッケージのパッケージマネージャであるPoetryを使ったものです。 Poetryを用いることで、インストールするPythonパッケージの依存関係やバージョンを比較的精密に管理することができます。
Poetryを利用する場合は別途pyenv, anyenv, asdf(おすすめ)といったPythonのバージョン管理ができるツールを用いて、Python 3.10をインストールしておく必要がある点に注意してください。
また、Poetryのバージョンとしては1.5.1
以上が必要になります。
Poetryを利用した環境構築は、以下のようにすれば完了します。
poetry install
2. Install with conda & pip
2つめの環境構築法は、Minicondaを使ったものです。 Minicondaは、科学計算用ライブラリを簡単にインストールできるパッケージマネージャであるAnacondaの縮小版です。
Minicondaを用いる環境構築では、通常さまざまなパッケージをconda
コマンドでインストールします。
しかし、conda
コマンドでインストールできるパッケージはしばしば古く、管理が難しいことがあります。
したがって今回は、Minicondaを用いてPython 3.10の仮想環境を構築し、その仮想環境の中にpip (Pythonのデフォルトのパッケージ管理ツール)でライブラリをインストールします。
ただ、PyTorchは通常通りconda
コマンドでインストールします。
これは、PyTorchのインストールには非常に多くの複雑怪奇な依存関係が存在する(例えば、システムのGCCのバージョンなど)ため、これらに関連して発生する問題をできるだけ避けるためです。
そのため、順番としては、conda
でPyTorchをインストールしたあとに、pip
のみを用いて必要なパッケージをインストールしていく、という流れになります。
環境構築は以下のようにコマンドを実行すれば完了すると思います。
なお、pytorch-cuda=11.8
のように記載している部分は、GPUを利用した計算を行うためのソフトウェアであるCUDAのバージョンを記載する必要があります。
お使いの実行環境に適したCUDAのバージョンを指定してください。
conda create -n bert-classification-tutorial python=3.10
conda activate bert-classification-tutorial
// see: https://pytorch.org/get-started/locally/
conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
pip install tqdm "transformers[ja,sentencepiece]" typed-argument-parser tokenizers numpy pandas more-itertools scikit-learn scipy