Project Icon

LlamaGuard-7B-AWQ

使用低位量化技术提升模型推理速度和效率

LlamaGuard-7B-AWQ采用了AWQ的4位量化技术,提升了模型在Linux和Windows平台上的推理效率和精度,需使用NVidia GPU。此模型相较于传统GPTQ设置,具备更快速度和良好的输出质量,兼容Text Generation Webui、vLLM及Transformers等系统,支持多用户推理服务,适合对时延和精度有较高要求的应用场景。

Llama-2-13B-chat-GPTQ - 经GPTQ量化的Llama 2对话模型
GithubHuggingfaceLlama 2Meta人工智能对话开源项目模型模型量化深度学习
Llama 2 13B Chat的GPTQ量化版本,提供4-bit和8-bit多种量化选项。模型支持AutoGPTQ和ExLlama等框架,可用于对话和文本生成。通过量化技术降低显存占用并保持模型性能,适合在GPU设备上部署使用。
Meta-Llama-3-8B-Instruct-quantized.w8a16 - 智能LLM量化技术实现50%体积压缩并完整保留性能
GithubHuggingfaceMeta-Llama-3OpenLLM人工智能开源项目权重优化模型模型量化
Meta-Llama-3-8B-Instruct模型经INT8量化优化后,参数位数从16位降至8位,减少约50%磁盘空间和GPU内存占用。在OpenLLM基准测试中,量化模型平均得分68.69,与原版68.54分相当。模型支持vLLM和transformers框架部署,适用于英语环境中商业和研究领域的AI助手应用。
llama-3-cat-8b-instruct-v1-GGUF - 文本生成模型的量化选择
GithubHuggingfacellama.cpp开源项目文件下载模型模型性能质量选择量化
此项目通过llama.cpp进行模型量化,以满足多样化的硬件限制需求。量化文件选择从Q8_0到IQ1_S不等,推荐使用Q6_K和Q5_K_M文件。使用huggingface-cli可方便下载所需文件。I-quant和K-quant适应不同硬件,特别在低于Q4时,I-quant表现出色。支持CPU和Apple Metal,需注意性能平衡。
Llava-v1.5-7B-GGUF - 轻量级多模态图文处理模型 支持多种精度量化
GithubHuggingfaceLLaVALlamaEdge图文理解大语言模型开源项目模型模型量化
Llava-v1.5-7B-GGUF是Llava 1.5 7B模型的GGUF量化版本,提供2位至8位多种精度选择,可根据性能和质量需求灵活使用。项目支持通过LlamaEdge快速部署,适用于多模态AI应用场景。该模型具备图像理解和文本生成能力,在保持性能的同时实现了模型体积的压缩。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
Qwen2.5-32B-AGI-Q6_K-GGUF - 通量计算优化的高性能大语言模型本地部署
GGUFGithubHuggingfaceQwen2.5llama.cpp大型语言模型开源项目模型模型转换
该项目提供了GGUF格式转换的Qwen2.5-32B-AGI模型,支持通过llama.cpp实现本地高效部署和推理。模型采用Q6_K量化方案,在维持性能的同时显著减少资源消耗。项目支持通过brew快速安装llama.cpp或源码编译部署,并提供命令行界面和服务器模式两种运行选项,为本地化大模型应用提供灵活解决方案。
Qwen2.5-Coder-7B-Instruct-GGUF - 深度学习模型的多规格量化版本适配不同硬件和性能要求
GGUFGithubHuggingfaceQwen2.5-Coder-7B-Instructllama.cpp大语言模型开源项目模型量化
本项目为Qwen2.5-Coder-7B-Instruct模型提供了从15GB到2.78GB的多种量化版本。采用llama.cpp最新技术,包括K-quants和I-quants两种量化方案,并针对ARM架构优化。用户可根据设备内存容量和性能需求选择适合版本。各版本保留原始模型核心功能,适用于多种部署场景。
zephyr-7B-alpha-AWQ - Zephyr 7B模型AWQ量化版支持轻量级推理部署
AWQGithubHuggingfaceZephyr-7B开源项目文本生成模型模型量化深度学习
Zephyr 7B Alpha是一个基于Mistral-7B训练的对话助手模型。本版本采用AWQ量化技术将模型压缩至4位精度,使用wikitext数据集和128g量化参数进行优化。相比GPTQ,AWQ量化能提供更快的推理速度,同时显著降低显存占用,使模型可以在配置较低的GPU上高效部署运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号