Project Icon

Phind-CodeLlama-34B-v2-GGUF

利用GGUF格式提升模型性能,兼容多平台GPU加速

Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。

WizardLM-13B-V1.2-GGUF - 引入GGUF格式,实现增强的Token化和特殊Token支持
GithubHuggingfaceWizardLM人工智能兼容性开源项目模型量化
WizardLM-13B-V1.2-GGUF采用llama.cpp团队发布的创新GGUF格式,替代传统的GGML。相比之下,GGUF在Token化和特殊Token支持方面更具优势,同时能够处理元数据,具有良好的扩展性。该模型兼容多种客户端和库,支持GPU加速,适合于多平台应用,提供高效推理。在量化参数选择上,该模型支持2至8位的CPU+GPU推理,以实现性能与质量的平衡。
Qwen2-7B-Instruct-GGUF - 高效量化AI模型 多平台支持 便捷本地部署
GGUFGPU加速GithubHuggingfaceQwen2-7B-Instruct开源项目文本生成模型模型量化
Qwen2-7B-Instruct-GGUF是Qwen2-7B-Instruct模型的GGUF格式量化版本。该模型支持2至8比特量化,可在llama.cpp、LM Studio等多个平台上本地部署。GGUF格式具有高效性能和广泛兼容性,便于在个人设备上进行AI文本生成。该项目为用户提供了多种比特率的量化选项,以适应不同的硬件环境和性能需求。
SmolLM-1.7B-Instruct-v0.2-GGUF - 多位宽GGUF格式量化指令模型SmolLM-1.7B
GGUFGithubHuggingfaceSmolLM-1.7B开源项目文本生成模型模型格式量化
SmolLM-1.7B-Instruct-v0.2-GGUF是一个量化后的指令调优语言模型,支持2-bit至8-bit多种量化位宽。该模型采用GGUF格式,兼容llama.cpp等多种客户端和库,适用于本地部署的文本生成任务,为AI应用提供了灵活高效的选择。
medicine-LLM-13B-GGUF - 专业级医学大语言模型GGUF格式量化版本
GGUFGithubHuggingfaceMedicine LLM医学人工智能大语言模型开源项目模型模型量化
本项目提供AdaptLLM开发的Medicine LLM 13B模型的GGUF量化版本。GGUF是llama.cpp团队推出的新格式,替代了旧有的GGML。项目包含2位到8位精度的多种量化版本,可适应不同硬件配置和性能需求。GGUF文件兼容多种客户端和库,便于用户灵活使用。量化版本在优化资源使用的同时,也保证了模型质量。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
dolphin-2.6-mistral-7B-GGUF - 兼容多平台的量化AI模型格式
Dolphin 2.6 Mistral 7BGithubHuggingface开源项目文件下载模型模型兼容性深度学习框架量化
该项目提供多平台兼容的GGUF格式模型文件,包括对GGML的量化替代方案,支持多种比特量化,适用于Windows、Linux和macOS平台的模型推理和GPU加速。用户可以选择合适的量化参数文件,并通过多种工具和命令行进行下载和运行,提升模型推理性能。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Hermes-3-Llama-3.1-70B-Uncensored-GGUF - 静态与多变量量化技术在Hermes-3-Llama模型中的应用
GithubHermes-3-Llama-3.1-70B-UncensoredHugging FaceHuggingfacetransformers工作站开源项目模型量化
Hermes-3-Llama-3.1-70B-Uncensored项目提供多种量化文件类型,包括更优的IQ-quants,适用于不同的性能需求。用户可参考TheBloke的材料了解GGUF文件的使用方法。不同的量化文件按大小排序,推荐使用性能较佳的Q4_K_S文件。项目特别感谢nethype GmbH提供的技术支持。
gemma-2-27b-it-GGUF - gemma-2-27b-it模型的GGUF量化版本适配多种硬件配置
GGUF格式GithubHuggingfacegemma-2-27b-it大语言模型开源项目文件下载模型模型量化
本项目提供gemma-2-27b-it模型的多种GGUF量化版本,涵盖从高质量Q8_0到紧凑型IQ2_M。用户可根据RAM和VRAM选择适合的模型。项目包含下载指南、模型选择建议和性能对比,便于部署和使用这些优化模型。
Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号