Project Icon

Phind-CodeLlama-34B-v2-GGUF

利用GGUF格式提升模型性能,兼容多平台GPU加速

Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。

Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
MadMix-Unleashed-12B-i1-GGUF - MadMix-Unleashed-12B模型量化文件的使用与性能分析
GithubHugging FaceHuggingfaceMadMix-Unleashed-12B开源项目服务器模型量化
项目MadMix-Unleashed-12B提供多种量化文件,适用于不同应用需求。量化文件如i1-IQ1_S和i1-IQ1_M等,可以根据性能和质量要求进行选择。文档中详细阐述了GGUF文件的使用方法,并提供了使用说明和质量比较。感谢nethype GmbH和@nicoboss的技术支持,他们的贡献提升了量化模型的质量。
gemma-2-9b-it-abliterated-GGUF - 文本生成性能优化的多种量化方法
ARM芯片GithubHuggingfacegemma-2-9b-it-abliterated嵌入/输出权重开源项目文本生成模型量化
该项目使用llama.cpp进行gemma-2-9b-it-abliterated模型的多种量化实现,能够适应不同的内存和硬件需求。用户可根据设备的RAM和GPU VRAM选择适合的模型文件大小。项目支持多种量化格式,如Q5_K_M和IQ3_M等,以满足不同的性能需求。通过huggingface-cli,用户可以轻松下载特定量化模型,并实现高效推理。建议在LM Studio中运行,并分享使用体验,以帮助优化模型质量和性能。
Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
Tiger-Gemma-9B-v3-GGUF - ARM推理优化与量化模型文件的综合指南
GithubHuggingfaceTiger-Gemma-9B-v3llama.cpp开源项目模型模型下载质量优化量化
Tiger-Gemma-9B-v3-GGUF项目提供了一系列专为ARM推理优化的量化模型文件,格式涵盖f16至Q2_K。项目采用llama.cpp的imatrix方法确保模型的输出和嵌入权重高精度,并允许通过huggingface-cli灵活下载文件。用户可根据设备资源选择'I-quant'或'K-quant'格式,以平衡高性能和空间效率,适用于文本生成任务的开发与研究。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
llama_cpp-rs - Rust绑定库实现GGUF大语言模型CPU运行
CPU运行GGUFGithubRust绑定llama_cpp-rs大语言模型开源项目
llama_cpp-rs是一个Rust绑定库,用于在CPU上运行GGUF大语言模型。它提供简洁的API,支持快速模型加载和文本生成。该项目兼容CUDA、Vulkan等后端,并包含内存预测功能。llama_cpp-rs简化了大语言模型的使用流程,适合各层级开发者。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
exllama - 为现代GPU优化的快速内存高效Llama实现
AI模型CUDAExLlamaGPU加速Github开源项目深度学习
ExLlama是一个基于Python/C++/CUDA的独立实现,针对4位GPTQ权重进行了优化,旨在提高现代GPU上的运行速度和内存效率。该项目支持NVIDIA 30系列及更新的GPU,可处理Llama、Koala和WizardLM等多种大型语言模型。ExLlama具备基准测试、聊天机器人示例和Web界面等功能,同时支持Docker部署。尽管仍在开发中,项目已展现出卓越的性能和效率。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号