Project Icon

Llama-3-Instruct-8B-SPPO-Iter3

改进文本生成的创新模型及其在多任务中的性能评估

Llama-3-Instruct-8B-SPPO-Iter3模型采用自我对弈偏好优化技术进行第三次迭代微调,具备强大的文本生成能力。模型通过IFEval、BBH、MATH、GPQA、MuSR等多个数据集进行多任务性能评估,其中IFEval (0-Shot)的严格准确率为68.28。该模型基于meta-llama/Meta-Llama-3-8B-Instruct,使用openbmb/UltraFeedback数据集训练,拥有8B参数,专注于英文文本生成,为语言模型的优化提供了全新视角和实用的性能测试结果。

LIMA-13b-hf - 基于Transformer架构的自动回归语言模型,用于自然语言处理的研究
GithubHuggingfaceLLaMA偏见评估大语言模型开源项目模型模型性能自然语言处理
LLaMA是由Meta AI的FAIR团队开发的基于Transformer架构的自动回归语言模型,专为自然语言处理和机器学习研究人员而设计。该模型提供7B、13B、33B和65B参数的多种规格,支持问答和自然语言理解等研究用途,并注重偏见和有害内容生成的评估与减少。虽然使用20种语言进行训练,但其在英语文本处理上表现更佳。LLaMA被定位为AI研究基础工具,不建议直接应用于未经评估的下游应用。
LLaMA-Factory - 提升语言模型微调效率的统一平台
GithubLLaMA Factory大语言模型开源项目快速微调性能优化模型量化热门
LLaMA-Factory是一个高效的语言模型微调工具,支持多种模型和算法。该平台专注于提高微调速度,支持连续预训练、监督微调和激励建模等策略。LLaMA-Factory利用LoRA技术实现高效训练,并提供详尽的数据监控和快速推理能力。此外,新版本还增加了PiSSA算法,且支持多种开发平台如Colab和DSW,适合高质量文本生成和智能应用开发。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
Online-RLHF - 在线人类反馈强化学习的开源大规模语言模型指南
GithubHuggingfaceLLaMA3Online RLHFRLHF modelReward model开源项目
本项目详细介绍了如何通过在线迭代性的人类反馈强化学习(RLHF)来对齐大规模语言模型(LLMs)。提供了详细的工作流程和易于复现的步骤,使用开源数据即可实现与LLaMA3-8B-instruct相当或更好的效果。内容包括模型发布、安装说明、数据生成、数据注释和训练步骤,帮助实现高效的在线RLHF训练。
Chinese-LLaMA-Alpaca - 中文NLP开源模型,深化语义理解与执行技术
Github中文Alpaca中文LLaMA大模型开源开源项目指令精调
Chinese-LLaMA-Alpaca-3项目致力于提升中文NLP的处理效率和效果,通过扩展中文词表并使用中文数据进行二次预训练,大幅增强了中文文本的编解码能力。该项目提供了完善的模型下载、部署和训练指导,支持多种生态系统和快速本地部署,适合高质量文本生成和多轮对话任务。同时,通过开源和社区合作,推动开源大模型技术研究及应用。
llama2_xs_460M_experimental - 了解LLaMA与LLaMa 2的小型实验版本及其精简模型参数
GithubHuggingfaceLLaMa 2MMLUTokenization大模型开源开源项目模型
项目呈现Meta AI的LLaMA与LLaMa 2开源重现版本,并采用缩小的模型参数:llama1_s为1.8B,llama2_xs为460M。训练基于RedPajama数据集,使用GPT2Tokenizer分词,支持通过HuggingFace Transformers库直接加载以及文本生成。模型在MMLU任务中表现评估,其中llama2_xs_460M在0-shot和5-shot中分别得21.13和26.39的分数。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
llama3.np - 轻量级NumPy实现的Llama 3语言模型
AI实现GithubLlama 3模型NumPyllama3.np开源项目深度学习
llama3.np是一个基于NumPy的Llama 3模型实现。该项目使用Andrej Karpathy的stories15M模型,提供详细的英文文档和CUDA版本。用户可通过Python命令生成文本。项目包含学术引用指南,并致谢相关库和工具贡献者。作为轻量级实现,llama3.np为研究人员和开发者提供了易于理解和使用的Llama 3模型。
Qwen2.5-14B-Instruct-GGUF - 提升语言生成能力支持多语言的14B指令微调模型
GithubHuggingfaceQwen2.5多语言支持开源项目指令调整模型语言模型长上下文支持
Qwen2.5-14B-Instruct-GGUF 模型在编码、数学和多语言支持方面表现卓越,能够生成最高达8K tokens的长文本,并支持128K的上下文长度。该模型适用于聊天与角色扮演,优化的指令跟随和结构化输出,覆盖29种语言,多语言能力强劲。为用户提供良好的长文本生成与结构化数据处理体验。
Llama-Chinese - Llama大模型中文社区
GithubLlama3Llama中文社区中文预训练模型开源项目模型微调社区活动
Llama中文社区致力于提供最先进的Llama中文模型优化技术,透过持续更新的Llama2和Llama3模型,支持更精准的中文处理。社区集结全球开发者与研究者,通过丰富的在线活动、专业讲座和技术交流,共同推动中文自然语言处理技术的创新与进步。Llama中文模型在技术进步和中文自然语言处理创新方面的影响。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号