Project Icon

UniNER-7B-all

跨多数据集的命名实体识别开源模型

UniNER-7B-all模型结合ChatGPT生成的Pile-NER-type和Pile-NER-definition数据及Universal NER基准中40个数据集进行训练,适合多数据集的命名实体识别研究。模型在排除CrossNER和MIT数据集的情况下进行OOD评估。详细的使用指南和模型信息可以通过相关论文及GitHub仓库获得,模型适用于研究目的,遵循CC BY-NC 4.0许可协议。

gliner_large-v2.1 - 通用命名实体识别模型,适合资源有限的应用场景
GLiNERGithubHuggingface双向Transformer命名实体识别多语言开源开源项目模型
GLiNER是使用双向Transformer编码器的通用命名实体识别模型,能够识别多种实体类型。相比于传统NER模型和体积庞大的语言模型,GLiNER在资源有限的情况下表现出卓越的灵活性和效率。最新的GLiNER v2.1版本支持单语和多语模型,性能表现依旧出色。用户可以通过安装GLiNER Python库,将其方便地集成到项目中,适用于多种语言的文本预测任务。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
arabic-ner - 阿拉伯语BERT命名实体识别模型支持九大类型
BERTGithubHugging FaceHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语
该阿拉伯语命名实体识别模型基于BERT预训练,可识别9种实体类型,包括人名、组织、地点等。模型使用37.8万标记的语料训练,在3万标记验证集上F1分数达87%。项目提供完整示例,适用于多种阿拉伯语自然语言处理任务。
gliner_medium-v2.1 - 多功能通用型命名实体识别模型GLiNER
GLiNERGithubHuggingface人工智能命名实体识别开源项目机器学习模型自然语言处理
GLiNER是一种基于双向Transformer编码器的命名实体识别模型,可识别任意类型的实体。该模型为资源受限场景提供了实用的替代方案,克服了传统NER模型仅限预定义实体的局限性,同时避免了大型语言模型的高成本问题。GLiNER支持多语言,提供不同规模的版本,安装使用简便。在NER基准测试中表现优异,适用于多种应用场景。
NuNER_Zero - 优化GLiNER架构的零样本命名实体识别模型
GLiNERGithubHuggingfaceNuNER Zero命名实体识别开源项目模型自然语言处理零样本学习
NuNER Zero是一种基于GLiNER架构的零样本命名实体识别模型,通过NuNER v2.0数据集训练。作为token分类器,它可识别任意长度的实体。在GLiNER基准测试中,NuNER Zero的token级F1分数较GLiNER-large-v2.1提升3.1%,成为当前性能领先的紧凑型零样本NER模型。该模型采用实体类型与文本拼接的输入方式,并具有便捷的安装与使用流程。
gliner_multi-v2.1 - 多语言命名实体识别模型兼顾灵活性与资源效率
GLiNERGithubHuggingface命名实体识别多语言模型开源项目机器学习模型自然语言处理
GLiNER是一种基于双向Transformer编码器的多语言命名实体识别模型,能够识别任意类型的实体。与传统NER模型和大型语言模型相比,GLiNER在保持性能的同时提高了资源效率。该模型提供多个版本,参数量介于166M至459M之间,支持英语和多语言处理,并采用Apache-2.0开源许可。GLiNER为资源受限的应用场景提供了一个实用的NER解决方案。
gliner_large-v1 - 资源友好的多实体识别模型,为多种应用场合提供灵活解决方案
GLiNERGithubHuggingfacePile-NER数据集双向变压器编码器命名实体识别开源项目模型模型训练
GLiNER是通过双向转换器编码器实现的命名实体识别模型,可识别多种实体类型。它是传统NER模型和大型语言模型这两者的高效替代,特别适合资源有限的场合。GLiNER在Pile-NER数据集上经过训练,具备灵活性且不受实体类型限制。用户可通过安装并导入GLiNER库轻松进行实体识别。
IndicNER - 面向11种印度语言的多语言命名实体识别模型
GithubHuggingfaceIndicNER印度语言命名实体识别多语言模型开源项目模型自然语言处理
IndicNER是一个针对11种印度语言开发的命名实体识别模型。该模型通过数百万句子的微调训练,并在人工标注测试集和多个公开数据集上进行了性能评估。IndicNER支持阿萨姆语、孟加拉语、古吉拉特语等多种印度语言,能够有效识别句子中的命名实体。作为一个基于最新深度学习技术的工具,IndicNER为印度语言的自然语言处理研究和应用提供了有力支持。
roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
xlm-roberta-large-wnut2017 - XLM-RoBERTa模型在多语言命名实体识别中的应用
GithubHuggingfaceNERTransformerXLM-RoBERTa开源项目模型模型微调自然语言处理
xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号