Project Icon

MogaNet

多阶门控聚合网络在计算机视觉领域的创新应用

MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。

We propose MogaNet, a new family of efficient ConvNets designed through the lens of multi-order game-theoretic interaction, to pursue informative context mining with preferable complexity-performance trade-offs. It shows excellent scalability and attains competitive results among state-of-the-art models with more efficient use of model parameters on ImageNet and multifarious typical vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D&3D human pose estimation, and video prediction.

This repository contains PyTorch implementation for MogaNet (ICLR 2024).

Table of Contents
  1. Catalog
  2. Image Classification
  3. License
  4. Acknowledgement
  5. Citation

Catalog

We plan to release implementations of MogaNet in a few months. Please watch us for the latest release. Currently, this repo is reimplemented according to our official implementations in OpenMixup, and we are working on cleaning up experimental results and code implementations. Models are released in GitHub / Baidu Cloud / Hugging Face.

  • ImageNet-1K Training and Validation Code with timm [code] [models] [Hugging Face 🤗]
  • ImageNet-1K Training and Validation Code in OpenMixup / MMPretrain (TODO)
  • Downstream Transfer to Object Detection and Instance Segmentation on COCO [code] [models] [demo]
  • Downstream Transfer to Semantic Segmentation on ADE20K [code] [models] [demo]
  • Downstream Transfer to 2D Human Pose Estimation on COCO [code] (baselines supported) [models] [demo]
  • Downstream Transfer to 3D Human Pose Estimation (baseline models will be supported)
  • Downstream Transfer to Video Prediction on MMNIST Variants [code] (baselines supported)
  • Image Classification on Google Colab and Notebook Demo [demo]

Image Classification

1. Installation

Please check INSTALL.md for installation instructions.

2. Training and Validation

See TRAINING.md for ImageNet-1K training and validation instructions, or refer to our OpenMixup implementations. We released pre-trained models on OpenMixup in moganet-in1k-weights. We have also reproduced ImageNet results with this repo and released args.yaml / summary.csv / model.pth.tar in moganet-in1k-weights. The parameters in the trained model can be extracted by code.

Here is a notebook demo of MogaNet which run the steps to perform inference with MogaNet for image classification.

3. ImageNet-1K Trained Models

ModelResolutionParams (M)Flops (G)Top-1 / top-5 (%)ScriptDownload
MogaNet-XT224x2242.970.8076.5 | 93.4args | scriptmodel | log
MogaNet-XT256x2562.971.0477.2 | 93.8args | scriptmodel | log
MogaNet-T224x2245.201.1079.0 | 94.6args | scriptmodel | log
MogaNet-T256x2565.201.4479.6 | 94.9args | scriptmodel | log
MogaNet-T*256x2565.201.4480.0 | 95.0config | scriptmodel | log
MogaNet-S224x22425.34.9783.4 | 96.9args | scriptmodel | log
MogaNet-B224x22443.99.9384.3 | 97.0args | scriptmodel | log
MogaNet-L224x22482.515.984.7 | 97.1args | scriptmodel | log
MogaNet-XL224x224180.834.585.1 | 97.4args | scriptmodel | log

4. Analysis Tools

(1) The code to count MACs of MogaNet variants.

python get_flops.py --model moganet_tiny

(2) The code to visualize Grad-CAM activation maps (or variants of Grad-CAM) of MogaNet and other popular architectures.

python cam_image.py --use_cuda --image_path /path/to/image.JPEG --model moganet_tiny --method gradcam

(back to top)

5. Downstream Tasks

Object Detection and Instance Segmentation on COCO
  • MogaNet + Mask R-CNN
  • MethodBackbonePretrainParamsFLOPsLr schdbox mAPmask mAPConfigDownload
    Mask R-CNNMogaNet-XTImageNet-1K22.8M185.4G1x40.737.6configlog / model
    Mask R-CNNMogaNet-TImageNet-1K25.0M191.7G1x42.639.1config
    项目侧边栏1项目侧边栏2
    推荐项目
    Project Cover

    豆包MarsCode

    豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

    Project Cover

    AI写歌

    Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

    Project Cover

    有言AI

    有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

    Project Cover

    Kimi

    Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

    Project Cover

    阿里绘蛙

    绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

    Project Cover

    吐司

    探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

    Project Cover

    SubCat字幕猫

    SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

    Project Cover

    美间AI

    美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

    Project Cover

    AIWritePaper论文写作

    AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

    投诉举报邮箱: service@vectorlightyear.com
    @2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号