Project Icon

Mamba-in-CV

Mamba模型在计算机视觉领域的最新应用概览

本项目整理了近期Mamba模型在计算机视觉领域的研究论文,涵盖分类、检测、分割、增强等多项CV任务。内容展示了Mamba在视觉应用中的潜力,并持续更新,为研究者提供了解该领域最新进展的便捷渠道。

Mamba-in-Computer-Vision

Mamba-in-VisionAwesome

A paper list of some recent Mamba-based CV works. If you find some ignored papers, please open issues or pull requests.

**Last updated: 2024/08/12

Mamba

  • (arXiv 2023.12) Mamba: Linear-Time Sequence Modeling with Selective State Spaces, [Paper], [Code]

Survey

  • (arXiv 2024.04) Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges, [Paper], [Project]
  • (arXiv 2024.04) A Survey on Visual Mamba, [Paper]
  • (arXiv 2024.04) State Space Model for New-Generation Network Alternative to Transformers: A Survey, [Paper], [Project]
  • (arXiv 2024.05) A Survey on Vision Mamba: Models, Applications and Challenges, [Paper], [Project]
  • (arXiv 2024.05) Vision Mamba: A Comprehensive Survey and Taxonomy, [Paper], [Project]

Recent Papers

Action

  • (arXiv 2024.03) HARMamba: Efficient Wearable Sensor Human Activity Recognition Based on Bidirectional Selective SSM, [Paper]
  • (arXiv 2024.04) Simba: Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos, [Paper]

Adversarial Attack

  • (arXiv 2024.03) Understanding Robustness of Visual State Space Models for Image Classification, [Paper]

Anomaly Detection

  • (arXiv 2024.04) MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection, [Paper], [Code]
  • (arXiv 2024.07) ALMRR: Anomaly Localization Mamba on Industrial Textured Surface with Feature Reconstruction and Refinement, [Paper], [Code]

Assessment

  • (arXiv 2024.06) Q-Mamba: On First Exploration of Vision Mamba for Image Quality Assessment, [Paper], [Code]

Autonomous Driving

  • (arXiv 2024.05) DriveWorld: 4D Pre-trained Scene Understanding via World Models for Autonomous Driving, [Paper]

Classification (Backbone)

  • (arXiv 2024.01) Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model, [Paper], [Code]
  • (arXiv 2024.01) VMamba: Visual State Space Model, [Paper], [Code]
  • (arXiv 2024.02) Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining, [Paper], [Code]
  • (arXiv 2024.02) Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning, [Paper],[Code]
  • (arXiv 2024.02) Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data, [Paper]
  • (arXiv 2024.03) LocalMamba: Visual State Space Model with Windowed Selective Scan, [Paper], [Code]
  • (arXiv 2024.03) EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba, [Paper], [Code]
  • (arXiv 2024.03) On the low-shot transferability of [V]-Mamba, [Paper]
  • (arXiv 2024.03) SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time series, [Paper], [Code]
  • (arXiv 2024.03) PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition, [Paper],[Code]
  • (arXiv 2024.03) MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection, [Paper],[Code]
  • (arXiv 2024.05) Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model, [Paper],[Code]
  • (arXiv 2024.05) Scalable Visual State Space Model with Fractal Scanning, [Paper]
  • (arXiv 2024.05) Mamba-R: Vision Mamba ALSO Needs Registers, [Paper]
  • (arXiv 2024.05) Demystify Mamba in Vision: A Linear Attention Perspective, [Paper],[Code]
  • (arXiv 2024.05) Vim-F: Visual State Space Model Benefiting from Learning in the Frequency Domain, [Paper],[Code]
  • (arXiv 2024.06) Autoregressive Pretraining with Mamba in Vision, [Paper],[Code]
  • (arXiv 2024.06) Towards Evaluating the Robustness of Visual State Space Models, [Paper],[Code]
  • (arXiv 2024.06) MambaVision: A Hybrid Mamba-Transformer Vision Backbone, [Paper],[Code]
  • (arXiv 2024.07) GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model, [Paper],[Code]

Compression

  • (arXiv 2024.05) MambaVC: Learned Visual Compression with Selective State Spaces, [Paper]

Crowd Counting

  • (arXiv 2024.05) VMambaCC: A Visual State Space Model for Crowd Counting, [Paper]

Deblurring

  • (arXiv 2024.03) Aggregating Local and Global Features via Selective State Spaces Model for Efficient Image Deblurring, [Paper],[Code]
  • (arXiv 2024.05) Efficient Visual State Space Model for Image Deblurring, [Paper]

Dehazing

  • (arXiv 2024.02) U-shaped Vision Mamba for Single Image Dehazing, [Paper],[Code]
  • (arXiv 2024.05) RSDehamba: Lightweight Vision Mamba for Remote Sensing Satellite Image Dehazing, [Paper]

Depth

  • (arXiv 2024.06) MambaDepth: Enhancing Long-range Dependency for Self-Supervised Fine-Structured Monocular Depth Estimation, [Paper],[Code]

Deraining

  • (arXiv 2024.04) FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining, [Paper]
  • (arXiv 2024.05) Image Deraining with Frequency-Enhanced State Space Model, [Paper]
  • (arXiv 2024.08) RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining, [Paper],[Code]

Detection

  • (arXiv 2024.03) MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection, [Paper],[Code]
  • (arXiv 2024.04) Fusion-Mamba for Cross-modality Object Detection, [Paper]
  • (arXiv 2024.04) CFMW: Cross-modality Fusion Mamba for Multispectral Object Detection under Adverse Weather Conditions, [Paper],[Code]
  • (arXiv 2024.05) SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients, [Paper],[Code]
  • (arXiv 2024.06) Mamba YOLO: SSMs-Based YOLO For Object Detection, [Paper],[Code]
  • (arXiv 2024.08) MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection, [Paper]
  • (arXiv 2024.08) MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection, [Paper],[Code]

Diffusion

  • (arXiv 2024.03) ZigMa: Zigzag Mamba Diffusion Model, [Paper],[Code]
  • (arXiv 2024.05) DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis, [Paper],[Code]
  • (arXiv 2024.05) Scaling Diffusion Mamba with Bidirectional SSMs for Efficient Image and Video Generation, [Paper]
  • (arXiv 2024.06) Dimba: Transformer-Mamba Diffusion Models, [Paper],[Code]
  • (arXiv 2024.08) LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba, [Paper]

Domain

  • (arXiv 2024.04) DGMamba: Domain Generalization via Generalized State Space Model, [Paper],[Code]

Enhancement

  • (arXiv 2024.04) MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 FLOPs, [Paper],[Code]
  • (arXiv 2024.05) Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement, [Paper],[Code]
  • (arXiv 2024.05) WaterMamba: Visual State Space Model for Underwater Image Enhancement, [Paper]
  • (arXiv 2024.05) MambaLLIE: Implicit Retinex-Aware Low Light Enhancement with Global-then-Local State Space, [Paper]
  • (arXiv 2024.06) LLEMamba: Low-Light Enhancement via Relighting-Guided Mamba with Deep Unfolding Network, [Paper]
  • (arXiv 2024.06) PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement, [Paper],[Code]
  • (arXiv 2024.07) RESVMUNetX: A Low-Light Enhancement Network Based on VMamba, [Paper]
  • (arXiv 2024.08) Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement, [Paper],[Code]

Event Cameras

  • (arXiv 2024.02) State Space Models for Event Cameras, [Paper]
  • (arXiv 2024.04) MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking, [Paper]

Face

  • (arXiv 2024.05) FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space, [Paper],[Code]

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号