Project Icon

handson-ml

Python机器学习基础与实践指南

该项目通过Python教授机器学习基本原理,包含《Hands-on Machine Learning with Scikit-Learn and TensorFlow》书中的示例代码和习题解答。用户可以使用Colab、Binder和Deepnote在线体验这些notebooks,或通过Anaconda在本地安装项目进行学习。详细介绍了安装步骤和常见问题解决方法,帮助用户理解和应用机器学习技术。

ml-course - 机器学习课程介绍,涵盖基础理论、实操任务和丰富资源
Deep LearningGithubGradient boostingMachine LearningNaive BayeskNN开源项目
这个机器学习课程介绍了从朴素贝叶斯和kNN到深度学习的基础知识。页面提供了详细的课程笔记、视频资料和练习题。适合初学者和进阶学习者,内容包括线性回归、支持向量机和梯度提升等,是系统学习机器学习的理想资源。
MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
Machine-Learning-Notes - 机器学习从入门到精通的全面笔记
Github人工智能学习开源项目机器学习笔记计算机科学
Machine-Learning-Notes 是一个机器学习领域的学习资源库,提供从基础到高级的笔记。项目涵盖算法、模型和实践应用,适合不同水平的学习者。资料全面且定期更新,采用循序渐进的学习方法,有助于系统掌握机器学习知识。其独特的结构化组织使学习者能够轻松找到所需资源,从而更有效地提升技能。
TensorFlow-Examples - 探索TensorFlow的最佳实践与全面教程
GithubTensorFlow开源项目数据管理机器学习深度学习神经网络
TensorFlow-Examples提供针对TensorFlow 1和2的详尽教程,涵盖从基础操作到高级模型如深度神经网络,适合初学者通过详细的笔记本和代码解析深入学习,同时介绍最新的API使用实践,如layers、estimator和dataset。
Dive-into-DL-TensorFlow2.0 - TensorFlow 2.0 深度学习中文教程与代码实现
GithubTensorFlow2代码重构动手学深度学习开源项目机器学习深度学习
本项目将《动手学深度学习》一书中的MXNet代码改为TensorFlow 2.0实现,提供完整的中文学习资源,涵盖线性回归、卷积神经网络、循环神经网络等核心内容。适合对深度学习感兴趣的初学者,只需掌握基础数学和Python编程即可入门。
mlcourse.ai - 综合性机器学习在线课程 理论实践并重
GithubOpenDataSciencemlcourse.ai开源项目数据分析机器学习课程算法
mlcourse.ai是OpenDataScience推出的开放式机器学习课程,涵盖数据分析到梯度提升等10个主题。课程通过理论讲解与实践作业相结合,帮助学习者掌握机器学习技能。提供多语言学习资源,包括文章、视频和编程作业,支持自定进度学习。另有付费作业包供选择,进一步提升学习效果。
Developing-Kaggle-Notebooks - Kaggle Notebooks数据分析实战指南
GithubKaggleNotebooks开源项目数据分析机器学习编程
本书全面介绍Kaggle Notebooks数据分析技巧,涵盖数据探索、可视化、代码优化等方面。通过实用示例讲解各类数据集分析方法,帮助读者提升技能,提高Kaggle排名。适合不同水平的数据科学爱好者学习参考。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
Blog - 全面涵盖深度学习与机器学习的教程项目
GithubPython人工智能开源项目机器学习深度学习算法
本项目汇集了深度学习和机器学习领域的系列教程与代码实现。内容覆盖从基础到高级的多个主题,包括神经网络、CNN、RNN、NLP等深度学习技术,以及特征工程、模型评估、异常检测等机器学习方法。每个主题均配有详细解析和Python代码,为AI学习和实践提供了丰富资源。
TensorFlow-World - TensorFlow教程与代码优化指南
GithubTensorFlow开源项目教程机器学习深度学习
本项目提供全面易懂的TensorFlow教程,每个教程均附源代码和详细文档,帮助开发者和研究者快速高效地掌握TensorFlow。内容涵盖基础操作、机器学习、神经网络等多个领域,并提供虚拟环境安装指南,避免包冲突并支持环境定制。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号