Project Icon

Machine-Learning-Interviews

机器学习工程师面试指南,大厂技术面试全攻略

该指南专为机器学习工程师和应用科学家职位的技术面试设计,特别适用于FAANG等大厂。内容包括算法与数据结构、机器学习编码、系统设计、基础知识和行为面试模块。作者基于自身的面试经验和笔记编写,分享如何有效准备常见面试模块。尽管不同公司的机器学习面试结构有所不同,本指南的模块对其他相关职位也有参考价值,帮助应聘者更好地应对机器学习领域的技术挑战。

MachineLearning-AI - 250天AI和机器学习实践项目 涵盖计算机视觉到优化算法
Github人工智能优化算法开源项目机器学习深度学习计算机视觉
该项目记录250天的人工智能和机器学习实践,涉及计算机视觉、深度学习、图神经网络等多个领域。同时探索蚁群优化、粒子群优化等算法。项目展示从基础到前沿的AI应用,提供丰富的代码实例和学习资源。
d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
can-ai-code - 通过人类撰写的面试题测试AI的编程能力
AI codingDockerGithubLLMquantizationtesting suite开源项目
该项目通过人类撰写的面试题测试AI的编程能力,提供多种主流API提供商和CUDA支持的推理脚本,并在基于Docker的沙盒环境中验证Python和NodeJS代码的安全性。用户可以评估提示技巧和采样参数对大语言模型(LLM)编码性能的影响,以及量化对LLM编码性能的衰减影响。项目包括多语言测试套件和来自OpenAI的Python-only测试套件,支持对比分析,并提供了详尽的结果数据和评估脚本。
data-science-on-aws - 在AWS平台上开展数据科学工作的全面指南,涵盖从数据摄取到模型部署的完整流程
AWSGithubSageMaker开源项目数据科学机器学习自然语言处理
该项目提供在AWS平台上开展数据科学工作的全面指南,涵盖从数据摄取到模型部署的完整流程。内容包括使用Amazon SageMaker构建AI/ML管道、BERT模型文本分类、高级模型训练及实时流分析等。项目特别关注自然语言处理任务,为数据科学家和机器学习工程师展示了AWS云端AI解决方案的实际应用。
cs-self-learning - 全面系统的计算机科学自学开源指南
CS自学Github开源课程开源项目编程语言计算机科学项目实践
这是一份全面的计算机科学自学指南,涵盖编程语言、算法、人工智能等多个领域。指南提供系统化学习路径,汇集优质开源课程资源和项目实践经验。内容包括多种主流编程语言、数学基础、计算机系统、网络、操作系统、编译原理、机器学习等核心领域。通过完成多个实际项目,学习者可以全面提升编程能力和解决问题的技巧。经过2-3年的学习,自学者可以掌握扎实的理论基础和实践能力,为未来的科研或就业做好准备。该指南适合计算机专业学生和有志于转行IT行业的人士使用。
machine-learning - 机器学习入门,掌握Python与数据分析
GithubMachine LearningPython开源项目数据分析深度学习统计
这个开源项目旨在帮助自学者系统地学习机器学习。内容涵盖Python基础、数据分析、数据可视化、数学和统计,以及机器学习和深度学习的多个在线课程和教程。通过推荐的YouTube视频、Coursera课程和开源项目,提供从基础到高级的学习资源,帮助学习者提升编程与数据分析能力,并逐步进入机器学习和深度学习的领域。
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials - 最新的机器学习、深度学习和人工智能教程集锦
AI应用GithubPyTorchTensorFlow开源项目机器学习深度学习
该项目提供了涵盖机器学习、深度学习和人工智能的最新教程,强调在GPU编程、数据中心人工智能以及与Web3相关的可持续人工智能等领域的最新动向。集成了PyTorch、TensorFlow等工具和库的实战案例,助力用户精通深度学习技术,同时展示技术在交通、医疗等领域的应用前景。
ml-road-map - 机器学习基础知识的系统学习路线图
Github人工智能开源项目数学机器学习深度学习编程
ml-road-map项目提供一份系统的机器学习学习路线图,涵盖从基础到进阶的知识体系。该路线图包括编程、数学、机器学习基础、深度学习和自然语言处理等主题,汇集了顶尖教育机构和专家的优质资源。它为学习者提供清晰的学习指南,帮助他们构建机器学习知识体系,为独立探索奠定基础。
awesome-machine-learning - 机器学习框架与资源汇总 多语言开源项目集锦
Github开源项目数据分析机器学习深度学习自然语言处理计算机视觉
Awesome Machine Learning项目汇集了按编程语言分类的机器学习开源资源。涵盖计算机视觉、自然语言处理、深度学习等领域的框架、库和工具,涉及Python、Java、C++等多种语言。此外还收录相关书籍、课程和博客,为机器学习从业者提供全面参考。项目保持活跃更新,欢迎社区贡献优质资源。
ml-engineering - 大规模语言模型与多模态模型的训练方法
BLOOM-176BContextual.AIGithubHuggingFaceLarge Language ModelsVLM开源项目
本指南系统介绍了方法、工具和逐步操作说明,帮助工程师成功训练大规模语言模型(LLM)和多模态模型(VLM)。内容涵盖丰富的脚本和命令,适合LLM/VLM训练工程师和操作员使用。基于作者在开源BLOOM-176B和IDEFICS-80B模型训练中的经验,提供有效解决方案,并持续更新,服务于ML社区。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号