Project Icon

reward-bench

用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性的基准工具

RewardBench是一款基准工具,用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性。该工具提供通用的推理代码、统一的数据集格式和测试,以确保公平评估,并拥有强大的分析与可视化功能。用户可以通过pip快速安装并运行评估脚本,测试各种奖励模型的性能和偏好集。

RLHF-Reward-Modeling - 训练 RLHF 奖励模型的配方
ArmoRMBradley-Terry Reward ModelGithubRLHFRewardBenchpair-preference model开源项目
该项目专注于通过顺序拒绝采样微调和迭代DPO方法进行奖励和偏好模型训练,提供包括ArmoRM、Pair Preference Model和Bradley-Terry Reward Model在内的多种开源模型,并在RewardBench排行榜中表现显著。项目内容涵盖奖励建模、模型架构、数据集准备和评估结果,适用于基于DRL的RLHF及多项学术研究。
bench - LLM性能评估与工作流标准化工具
BenchGitHubGithubLLMpython开源项目评估
Bench是一款适用于生产环境的LLM评估工具,支持比较不同的LLM、提示词和生成超参数(如温度和令牌数量)。它提供统一接口,实现LLM评估流程标准化,可测试开源LLM在特定数据上的表现,并将排行的排名转化为实际用例评分。用户可以安装Bench、创建并运行测试套件,通过本地UI查看结果。
FsfairX-LLaMA3-RM-v0.1 - 基于LLaMA-3的开源奖励函数,支持多种RLHF方案的高性能实现
GithubHuggingfaceLLaMA3RLHF人工智能奖励建模开源项目模型模型训练
FsfairX-LLaMA3-RM-v0.1是一个基于LLaMA-3开发的强化学习奖励模型。该模型在Reward-Bench测试中取得了Chat 99.44分、Safety 88.76分等优秀成绩,支持PPO等多种人类反馈学习方法。项目提供完整的训练代码和使用示例,有助于开发更安全的AI应用。
reward-model-deberta-v3-large-v2 - 人类反馈训练奖励模型 提升问答评估和强化学习效果
DeBERTaGithubHuggingfaceRLHF人工智能奖励模型开源项目模型语言模型
这个开源项目开发了一种基于人类反馈的奖励模型(RM),能够评估给定问题的答案质量。该模型在多个数据集上进行训练,可应用于问答系统评估、强化学习人类反馈(RLHF)奖励计算,以及有害内容检测等场景。项目提供了详细的使用说明、性能对比和代码示例。其中,DeBERTa-v3-large-v2版本在多项基准测试中展现出优异性能。
promptbench - 大语言模型的评估与理解综合工具包
GithubPrompt EngineeringPromptBench大语言模型对抗性提示开源项目评估
基于Pytorch的Python包,提供评估和理解大语言模型的友好API。支持快速模型性能评估、提示工程、对抗性提示评估和动态评估框架。兼容多种模型(如GPT-4、Llama2、BLIP2)和数据集(如GLUE、SQuAD、VQAv2)。适合研究人员和开发者使用与扩展。
powerful-benchmarker - 高效模型基准测试工具,支持无监督域适应和度量学习
GithubPowerful Benchmarker域适应安装指南开源项目指标学习文件组织
提供功能强大的模型基准测试工具,适用于无监督域适应和度量学习,特色包括三种新验证方法和大规模基准排名。项目提供简便的安装步骤、路径设置和丰富的脚本支持,同时还包含Jupyter notebooks、各种脚本和测试代码,确保实验顺利进行。
ImageReward - 基于专家比较的文本到图像生成人类偏好评价模型
GithubImageRewardReFLStable Diffusion人类偏好学习开源项目文本到图像生成
ImageReward是首个通用的文本到图像生成偏好评价模型,基于137k对专家比较进行训练,显著优于现有方法。创新的Reward Feedback Learning (ReFL)机制直接优化生成模型,胜率提高58.4%,现已整合为便捷易用的Python包。
Skywork-Reward-Gemma-2-27B - 先进奖励模型展示小数据集训练的潜力
GemmaGithubHuggingfaceLLaMaSkywork Reward Model偏好学习开源项目模型自然语言处理
Skywork-Reward-Gemma-2-27B是基于gemma-2-27b-it架构开发的奖励模型。该模型仅使用80K高质量偏好对数据进行训练,在数学、编程和安全等多个领域的复杂场景偏好判断中表现优异。目前在RewardBench排行榜位居榜首,证明了利用相对小规模数据集和简单数据处理技术也能构建高性能奖励模型。
AgentBench - 全面评估大型语言模型在多环境下的自主代理能力
AgentBenchGithubLLM-as-Agent任务设置开源项目测试结果评估框架
AgentBench是首个评估大型语言模型(LLM)作为自主代理的基准,涵盖操作系统、数据库、知识图谱等8个不同环境。该项目通过多任务设置和完整的数据集,深入分析LLM的实际应用能力。新版AgentBench v0.2优化了框架结构,并增加了更多模型的测试结果,方便开发者扩展和使用。
Skywork-Reward-Llama-3.1-8B-v0.2 - 小型数据集训练的高性能奖励模型实现卓越偏好处理
GithubHuggingfaceReward ModelSkywork人工智能大语言模型开源项目数据集模型
Skywork-Reward-Llama-3.1-8B-v0.2是基于Llama-3.1-8B-Instruct架构的奖励模型,通过80K高质量偏好对数据集训练而成。该模型在复杂场景中展现出优秀的偏好处理能力,在数学、编程和安全等领域表现出色。在RewardBench排行榜上,它在8B模型中排名第一。这一成果证明了经过精心筛选的小型数据集也能用于训练高性能奖励模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号