Project Icon

docker-pytorch

PyTorch开发环境的Docker镜像

docker-pytorch项目提供预配置的Docker镜像,整合Ubuntu、PyTorch和可选的CUDA。该镜像支持GPU加速,便于搭建深度学习环境。用户可运行PyTorch脚本和图形化应用,也可自定义镜像。这个项目为PyTorch开发者提供了便捷的环境配置方案。

stable-diffusion-docker - 多功能 GPU 加速的 Stable Diffusion Docker 容器
DockerGPUGithubHuggingfaceStable Diffusion开源项目模型
Stable Diffusion Docker 容器在支持 CUDA 的 GPU 上运行,通过官方模型实现高质量图像生成。支持从文本生成图像、图像修改、深度引导和图像修复等功能,适用多种应用场景。最低要求 8GB VRAM 的 GPU,并提供设备选择和内存优化选项。详细使用指南和示例帮助用户快速入门。
vision - TorchVision 计算机视觉库 提供数据集模型和图像处理功能
GithubPyTorchtorchvision图像处理开源项目深度学习计算机视觉
TorchVision是PyTorch生态系统的计算机视觉库,提供常用数据集、模型架构和图像变换功能。它支持torch张量和PIL图像后端,具备视频处理能力。该库同时提供Python和C++ API,适用于各种计算机视觉任务。TorchVision版本与PyTorch和Python版本兼容,持续更新以支持最新技术。
docker - 开源容器平台实现跨平台应用部署与管理
APIDockerGithub安装容器化开发开源项目
Docker是一个开源容器化平台,为应用程序提供轻量级、可移植的打包、分发和运行方式。它将应用及依赖项封装在标准化单元中,实现跨平台一致部署。该项目支持Dart和Flutter开发,并提供Docker Engine API,增强容器控制和管理能力。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANGithubPyTorchpix2pix图像翻译开源项目神经网络
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
jetson-containers - 为NVIDIA Jetson提供的模块化AI和机器学习容器系统
AI容器DockerGithubJetPackJetsonNVIDIA开源项目
提供适用于NVIDIA Jetson设备的多种AI和机器学习容器,包括PyTorch、TensorFlow、ONNXRuntime和DeepStream等,支持灵活设置不同CUDA版本,并组合多个包如ROS2和Transformer。通过命令行工具可快速运行所需的容器镜像,并有详细文档和教程帮助用户最大化利用Jetson平台的计算能力,简化机器学习和计算机视觉任务的实现。
deepo - 深度学习Docker环境定制的开源解决方案
DeepoDockerGithub依赖关系开源项目框架深度学习
Deepo是一个开源框架,用于轻松组装深度学习研究的Docker镜像。通过提供多种标准组件和定制化Dockerfile生成器,用户可以简单定义环境并自动解决依赖问题。Deepo支持几乎所有常用的深度学习框架,提供预构建的Docker镜像,支持GPU加速和CPU模式,兼容Linux、Windows和OS X。尽管该项目已停止维护,但仍为快速搭建深度学习环境提供了宝贵的工具和资源。
gpytorch - 基于PyTorch实现的灵活高斯过程建模工具
GPU加速GPyTorchGaussian processGithubKISS-GPPyTorch开源项目
GPyTorch是一个基于PyTorch实现的高斯过程库,旨在简便地创建可扩展、灵活的高斯过程模型。它通过数值线性代数技术实现了显著的GPU加速,并集成了如SKI/KISS-GP和随机Lanczos展开等先进算法,同时能与深度学习框架无缝结合。支持Python 3.8及以上版本。更多信息、示例和教程请参阅官方文档。
mlflow-docker - Docker化MLflow环境的快速部署方案
DockerGithubMLFlowMySqlPythonS3开源项目
mlflow-docker项目提供了一个简化的Docker配置,用于快速部署MLflow环境。该方案集成了Minio S3作为工件存储和MySQL作为MLflow后端存储。项目通过.env文件配置和docker compose命令实现一键部署,同时提供了Python开发所需的bash脚本。此外,项目还包含客户端配置脚本,便于在Python开发中使用MLflow。这一解决方案适用于需要迅速搭建MLflow项目环境的开发者。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号