Project Icon

sbx

Jax加持的Stable-Baselines3强化学习库

SBX是Stable-Baselines3的Jax实现版本,集成了SAC、TQC、PPO等多种先进强化学习算法。它与SB3保持相同API,可与RL Zoo无缝对接,并提供详细使用示例。SBX为复杂环境和任务提供高效、可靠的强化学习实现。

dm-haiku - JAX神经网络构建的简洁解决方案
DeepMindGithubHaikuJAX开源项目神经网络谷歌
Haiku是一个为JAX设计的简洁神经网络库,具备面向对象编程模型和纯函数转换功能。由Sonnet的开发者创建,Haiku能简化模型参数和状态管理,并与其他JAX库无缝集成。虽然Google DeepMind建议新项目使用Flax,Haiku仍将在维护模式下持续支持,专注于修复bug和兼容性更新。
Mava - 基于JAX的高效多智能体强化学习框架
GithubJAXMava分布式计算多智能体强化学习开源项目环境包装器
Mava是基于JAX的分布式多智能体强化学习框架,提供精简代码实现和快速迭代工具。它集成了MARL算法、环境封装、教学资源和评估方法,充分利用JAX并行计算优势,在多个环境中实现卓越性能和训练速度。Mava设计简洁易懂,便于扩展,适合MARL研究人员和实践者使用。
jaxdf - JAX框架打造可微分物理模拟器
GithubJAXjaxdf偏微分方程开源项目数值模拟自动微分
jaxdf是基于JAX的开源框架,用于创建可微分数值模拟器。该框架支持任意离散化,主要应用于物理系统建模,如波传播和偏微分方程求解。jaxdf生成的纯函数模型可与JAX编写的可微分程序无缝集成,适用于神经网络层或物理损失函数。框架提供自定义算子、多种离散化方法,并附有详细文档和示例。
optimistix - JAX生态系统中的高效非线性求解器
GithubJAXOptimistixPython库开源项目数值优化非线性求解器
Optimistix是一个基于JAX的非线性求解器库,专门用于根查找、最小化、不动点和最小二乘问题。该库提供可互操作的求解器和模块化优化器,支持PyTree状态,并与Optax兼容。Optimistix具有快速编译和运行时间,充分利用JAX的自动微分、自动并行和GPU/TPU支持等特性,为科学计算和机器学习领域提供高效工具。
skrl - 开源模块化强化学习库
GithubJAXPyTorchSKRL开源项目强化学习环境接口
skrl是基于PyTorch和JAX的开源模块化强化学习库。支持OpenAI Gym、Farama Gymnasium等多种环境接口,并兼容NVIDIA Isaac系列环境。该库注重模块化设计、代码可读性和实现透明度,允许同时训练多个智能体,可在单次运行中共享或独立资源。skrl为强化学习研究和开发提供了灵活高效的工具。
equinox - 强大且易用的JAX兼容神经网络库
EquinoxGithubJAXPyTree开源项目神经网络转换API
Equinox是一款专为JAX设计的神经网络库,拥有类似PyTorch的语法。该库支持过滤API和PyTree操作,并兼容JAX及其生态系统中的所有工具。对于新手用户,推荐使用MNIST卷积神经网络示例,简化模型构建过程。Equinox还提供运行时错误处理等高级功能。
Popular-RL-Algorithms - 流行强化学习算法的PyTorch实现与评估
GithubPyTorch开源代码开源项目强化学习性能对比算法实现
Popular-RL-Algorithms项目实现了SAC、DDPG、TD3、PPO等多种流行强化学习算法的PyTorch版本。项目提供了算法的多种实现以便比较,并包含奖励归一化、多进程训练等实用技巧。通过在OpenAI Gym环境中的性能展示,为强化学习研究和应用提供了参考。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
paxml - 基于Jax的高效机器学习实验配置和运行框架
Cloud TPUGithubGooglePaxml开源项目性能优化机器学习
Paxml是一个基于Jax的开源框架,致力于机器学习实验的配置与运行。该框架支持云TPU VM快速部署,同时提供PyPI和GitHub的稳定及开发版本下载。Paxml还包含丰富的文档资源和Jupyter Notebook教程,支持GPU加速,并可广泛适用于不同开发者的需求,是推动机器学习实验项目高效发展的优选工具。
jax-triton - JAX与Triton集成实现GPU计算加速
CUDAGPU加速GithubJAXTritonjax-triton开源项目
jax-triton项目实现了JAX和Triton的集成,让开发者能在JAX中使用Triton的GPU计算功能。通过triton_call函数,可在JAX编译函数中应用Triton内核,提高计算密集型任务效率。项目提供文档和示例,适合机器学习和科学计算领域的GPU计算优化需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号