Project Icon

Mistral-Small-Instruct-2409-GGUF

Mistral小型指令模型的多精度GGUF量化版本

Mistral-Small-Instruct模型的GGUF量化版本集合,文件大小从6GB到44GB不等。采用llama.cpp量化技术,提供从IQ2到F16的多种精度选择。包含详细的硬件兼容性说明和模型选择指南,支持多语言处理。

Meta-Llama-3.1-70B-Instruct-GGUF - 多语言支持的70B参数GGUF量化指令模型
GGUF模型GithubHuggingfaceMeta-Llama开源项目文本生成本地运行模型量化
Meta-Llama-3.1-70B-Instruct模型的GGUF格式量化版本,提供2-bit至8-bit多种精度选择。这个70B参数模型支持英语、德语、法语等多种语言,适用于文本生成任务。GGUF格式优化了本地部署和推理效率,适合在本地环境运行大型语言模型。该模型兼容多种支持GGUF的推理工具,为用户提供灵活的应用选择。
mistral-nemo-instruct-2407-awq - Mistral-Nemo-Instruct-2407模型的AWQ量化指令版本
GithubHuggingfaceMistralNeMo人工智能大语言模型开源项目模型自然语言处理
mistral-nemo-instruct-2407-awq是Mistral-Nemo-Instruct-2407模型的AWQ量化版本。这个项目通过使用AWQ(Activation-aware Weight Quantization)技术,在保持原有模型性能的基础上,显著降低了模型大小和计算资源需求。该模型适用于各类自然语言处理任务,为开发者和研究人员提供了一个优化的大规模语言模型选择。
Mistral-Nemo-Instruct-2407-FP8 - FP8量化技术在模型优化与部署中的应用
GithubHuggingfaceMistral-Nemo-Instruct-2407-FP8开源项目模型模型优化评估部署量化
Mistral-Nemo-Instruct-2407-FP8通过FP8量化技术提升了模型的内存和体积效率,主要用于商业和研究。该模型适用于英语聊天助手,利用参数位数的减少节省约50%的资源。结合vLLM>=0.5.0的高效推理环境,优化部署性能。量化由AutoFP8完成,Neural Magic计划转向支持更多方案的llm-compressor。尽管量化后某些评测得分略有下降,但保持的性能恢复率使其成为资源效率化的优选方案。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
Llama-3.2-3B-Instruct-GGUF - 量化版Llama 3.2 3B指令模型的GGUF格式实现
GGUFGithubHuggingfaceLlama大语言模型开源项目文本生成模型量化模型
本项目提供Llama-3.2-3B-Instruct模型的GGUF格式文件。GGUF是llama.cpp团队推出的新格式,取代了旧有的GGML。模型支持2-bit至8-bit多种量化级别,适用于文本生成。项目还介绍了多个支持GGUF的工具和库,如llama.cpp、LM Studio等,方便用户选择合适的使用方式。
gemma-2-27b-it-GGUF - gemma-2-27b-it模型的GGUF量化版本适配多种硬件配置
GGUF格式GithubHuggingfacegemma-2-27b-it大语言模型开源项目文件下载模型模型量化
本项目提供gemma-2-27b-it模型的多种GGUF量化版本,涵盖从高质量Q8_0到紧凑型IQ2_M。用户可根据RAM和VRAM选择适合的模型。项目包含下载指南、模型选择建议和性能对比,便于部署和使用这些优化模型。
Meraj-Mini-GGUF - 多精度量化GGUF语言模型 适配多平台本地部署
GGUFGithubHuggingfacellama.cpp人工智能开源模型开源项目模型模型转换
Meraj-Mini-GGUF项目提供Meraj-Mini模型的GGUF格式版本,支持2-bit至8-bit量化精度。GGUF作为llama.cpp团队开发的新型模型格式,具备卓越性能和广泛兼容性。该模型可在LM Studio、text-generation-webui等主流平台运行,支持GPU加速,适合本地部署文本生成任务。项目兼容多种客户端和库,如llama.cpp、GPT4All等,为用户提供灵活的应用选择。
Phi-3.5-mini-instruct-GGUF - Microsoft Phi-3.5-mini模型的GGUF格式多位宽量化版本
GGUFGithubHuggingfacePhi-3.5开源项目文本生成本地部署模型量化模型
此项目提供Microsoft Phi-3.5-mini-instruct模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,取代了GGML。支持2-bit至8-bit多种量化位宽,兼容多个GGUF支持工具,如llama.cpp和LM Studio。这些工具具备GPU加速和Web界面,便于本地部署和使用大型语言模型。
solar-pro-preview-instruct-GGUF - 高效量化的GGUF格式Solar-Pro-Instruct模型
GGUFGithubHuggingfacellama.cppsolar-pro-preview-instruct开源项目文本生成模型量化模型
该项目提供Solar-Pro-Preview-Instruct模型的GGUF格式文件,支持2-8位量化。GGUF是llama.cpp团队开发的新格式,替代了旧有的GGML。这一格式广泛应用于llama.cpp、LM Studio等多个流行的本地部署工具和库中,为高效的本地文本生成任务提供支持。
Midnight-Miqu-70B-v1.5-i1-GGUF - Midnight-Miqu-70B-v1.5量化模型:优化AI实施的多样化策略
GithubHuggingfaceMidnight-Miqu-70B-v1.5变压器库合并工具开源项目模型模型使用量化
此项目提供Midnight-Miqu-70B-v1.5的多种GGUF量化文件,采用权重和imatrix量化,支持多种规格和类型如IQ1至IQ4及Q5、Q6,适应速度、质量和空间需求的平衡。用户可参考TheBloke的README获取操作指南,适合寻求优化AI模型效率的开发者,助力高效机器学习模型部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号