Project Icon

Qwen2.5-72B-Instruct-GGUF

大语言模型多种量化版本集合 适配不同硬件配置

该项目提供了Qwen2.5-72B-Instruct模型的18种量化版本,文件大小范围为23GB至77GB。使用llama.cpp的最新量化技术,包括K-quants和I-quants系列。所有版本均经imatrix优化,并更新了上下文长度设置和分词器。项目还提供了详细的性能对比和设备兼容性指南,方便用户根据自身硬件配置选择合适版本。这些模型特别适合在LM Studio等推理引擎上运行。

CodeQwen1.5 - 多语言支持的高性能代码生成模型
CodeQwen1.5Github代码生成开源项目模型部署编程语言长上下文
CodeQwen1.5是一款专用于代码生成的大型语言模型,支持92种编程语言,具备64K tokens的长文本处理能力。该模型在代码生成、文本到SQL转换和bug修复等任务中表现优异,为开发者提供了高效的AI编码辅助工具。作为Qwen1.5的专用代码版本,CodeQwen1.5采用transformer架构,在多项基准测试中展现出卓越性能。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
fsdp_qlora - 量化技术实现大型语言模型的高效训练
FSDPGithubLLMQLoRA开源项目微调量化
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMGithubLlama3.1大语言模型开源项目推理优化模型压缩
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
llm-toys - 微调小型语言模型实现多任务处理
Githubllm-toys任务微调低资源模型对话摘要开源项目语气变化
llm-toys 项目提供适用于释义、语气转换、对话总结和主题生成等任务的小型量化3B和7B语言模型。这些经过微调的模型能在普通消费级硬件上高效运行,并通过简单的安装步骤提升文本处理和生成能力。
Taiwan-LLM - 专为繁体中文与英语环境设计的高性能语言模型,具有70亿参数规模
GithubLlama-3-Taiwan-70BNLP基准NVIDIA传统中文开源项目聊天机器人
Llama-3-Taiwan-70B是专为繁体中文与英语环境设计的高性能语言模型,具有70亿参数规模,涵盖多个行业领域。该模型透过NVIDIA NeMo技术优化,已完成在台北一号的NVIDIA DGX H100系统上的训练,获多个企业支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号