Project Icon

H-optimus-0

自监督视觉Transformer在病理学与组织学中的应用

H-optimus-0是一个开源的视觉Transformer模型,基于11亿参数,利用自监督学习在50万张H&E染色全幅切片病理图像上训练。该模型能从组织学图像中提取强大特征,支持突变预测、生存分析和组织分类等应用。模型期望输入图像尺寸为224x224,建议在CUDA设备上采用混合精度以加快推断。适用于医学图像处理,尤其在病理学与组织学研究中表现出色。

项目简介

H-optimus-0是一个专为组织学设计的开源基础模型,由Bioptimus公司开发。这个模型具有11亿参数的视觉转换器(Vision Transformer),训练数据来自一个超过500,000张H&E染色全片组织学图像的专有数据库。用户可以通过访问Bioptimus的GitHub仓库获取更多信息。

应用领域

H-optimus-0可以用于提取组织学图像中的强大特征,这些特征可应用于多种下游任务,如突变预测、生存分析或组织分类等领域。

使用方法

为了提取特征,用户可以使用下面的代码进行推断。H-optimus-0需要输入大小为224x224,像素精度为每像素0.5微米的图像。

from huggingface_hub import login
import torch
import timm 
from torchvision import transforms

# 登录Hugging Face hub,使用用户访问令牌
login()

model = timm.create_model(
    "hf-hub:bioptimus/H-optimus-0", pretrained=True, init_values=1e-5, dynamic_img_size=False
)
model.to("cuda")
model.eval()

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(
        mean=(0.707223, 0.578729, 0.703617), 
        std=(0.211883, 0.230117, 0.177517)
    ),
])

input = torch.rand(3, 224, 224)
input = transforms.ToPILImage()(input)

# 推荐使用混合精度进行更快速的推断。
with torch.autocast(device_type="cuda", dtype=torch.float16):
    with torch.inference_mode():
        features = model(transform(input).unsqueeze(0).to("cuda"))

assert features.shape == (1, 1536)

引用信息

如果您发现该项目有用,可以考虑参考并引用我们的工作:

@software{hoptimus0,
  author = {Saillard, Charlie and Jenatton, Rodolphe and Llinares-López, Felipe and Mariet, Zelda and Cahané, David and Durand, Eric and Vert, Jean-Philippe},
  title = {H-optimus-0},
  url = {https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0},
  year = {2024},
}

H-optimus-0在医学成像、病理学等多个领域提供了一种先进的解决方案,借助自监督学习和视觉转换技术,显著提升了组织图像特征提取的能力。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号