Project Icon

alphaflow

蛋白质构象集生成的流匹配模型

AlphaFlow是基于AlphaFold的改进版本,通过流匹配目标微调,专门生成蛋白质构象集合。它模拟实验和分子动力学集合,提供完整代码、说明和模型权重。项目还包括ESMFold的微调版本ESMFlow。这些工具有助于研究蛋白质结构多样性和动态特性,为蛋白质科学研究提供新的方法和视角。

alphafold - 突破性的蛋白质结构预测AI系统
AlphaFoldDockerGithub开源项目深度学习生物信息学蛋白质结构预测
AlphaFold是DeepMind开发的人工智能系统,可高精度预测蛋白质三维结构。系统支持单体和多聚体蛋白预测,并提供TM-score和对齐误差等评估指标。AlphaFold结合深度学习和基因数据库,在CASP14竞赛中获得重大突破。其开源代码和预训练模型为研究人员提供了强大的蛋白质结构分析工具,有助于推动生物学和医学研究进展。
AlphaFold3 - 预测蛋白质相互作用结构的开源工具
AlphaFold3GithubPyTorch开源项目深度学习蛋白质结构预测遗传扩散
AlphaFold3通过基因扩散模型实现了生物分子相互作用结构的精确预测。该模型处理包括聚合物序列、残基修饰和配体smiles符号等多种输入数据,适用于预测多达1000个残基的蛋白质结构。独特的交叉蒸馏方法和信心评估机制减少了模型幻觉问题,增强了预测的可信度。用户可通过PyTorch和Docker容器便捷安装和运行该模型。
alphafold3-pytorch - 基于PyTorch的蛋白质结构预测模型开源实现
AlphaFold 3GithubPytorch开源项目机器学习生物信息学蛋白质结构预测
这是AlphaFold 3的PyTorch开源实现项目。它包含完整的模型架构、训练和推理流程,以及详细的数据准备指南。项目支持原子级和分子级的输入处理,提供PDB数据集筛选和聚类脚本。丰富的文档和示例代码有助于用户理解和使用AlphaFold 3模型。该实现为蛋白质结构预测研究提供了有价值的开源工具。
openfold - 增强蛋白质结构预测功能的AlphaFold2 PyTorch复现版本
AlphaFold 2DeepMindGithubOpenFoldPyTorch开源项目蛋白质结构预测
OpenFold是DeepMind AlphaFold 2的可训练PyTorch复现版本,提供高效的蛋白质结构预测解决方案。详细的安装、模型推理和训练指南可在文档主页找到。项目采用Apache Licence 2.0许可,使用的DeepMind预训练参数遵循CC BY 4.0许可。欢迎社区通过提交问题或拉请求进行贡献。引用OpenFold时应同时参考相关的AlphaFold研究成果。
esmfold_v1 - 突破性的高速蛋白质结构预测技术
ESMFoldGithubHuggingface人工智能开源项目模型深度学习生物信息学蛋白质折叠
ESMFold是一种革新性的蛋白质结构预测模型,基于ESM-2架构设计。它摒弃了传统的序列比对和数据库依赖,实现了纯端到端的预测流程,显著提升了计算效率。相较于AlphaFold2等方法,ESMFold在速度上具有明显优势,同时保持了高精度。该项目提供了详细的使用教程,方便研究人员快速应用于实际工作中。
ColabFold - 基于Google Colab的蛋白质结构预测工具
AlphaFoldColabFoldGithub开源项目生物信息学结构预测蛋白质折叠
ColabFold是一个基于Google Colab的开源项目,整合了AlphaFold2和RoseTTAFold等先进工具,为蛋白质结构预测提供便捷解决方案。该项目支持单体和复合物预测,采用MMseqs2进行快速序列搜索,并可选用模板。ColabFold具有用户友好的界面,持续更新以提供最新的预测技术,是研究人员进行蛋白质结构分析的有力工具。
PhiFlow - 注重物理模拟与机器学习的开源仿真工具
GPU执行GithubPhiFlowPython开源项目机器学习模拟工具包
PhiFlow 是一款开源仿真工具包,专为优化和机器学习应用设计。它主要用 Python 编写,与 NumPy、PyTorch、Jax 和 TensorFlow 深度集成,利用这些框架的自动微分功能,简化涉及学习模型和物理仿真的可微函数构建。PhiFlow 特别适用于流体现象的 PDE 操作,通过联网操作支持实时可视化和交互控制,并支持 GPU 执行,为用户提供简洁、灵活且可扩展的编码体验。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
awesome-flow-matching - 流匹配与随机插值技术推动生成模型创新
Flow MatchingGithub开源项目插值概率流生成模型随机插值
awesome-flow-matching项目收集了流匹配和随机插值领域的前沿研究成果,涵盖理论基础和实际应用。项目包含Flow Matching、Stochastic Interpolants等创新技术,为研究人员和开发者提供全面资源,有助于深入理解先进生成模型方法,推动人工智能领域技术进步。
alphamissense - 全蛋白质组错义突变效应预测的革命性工具
AlphaMissenseGithub基因数据库开源项目模型实现氨基酸替换蛋白质序列
AlphaMissense是一个预测蛋白质错义变异效应的开源模型。该项目提供模型实现、数据处理流程和人类氨基酸替换的预计算结果。基于AlphaFold开发,AlphaMissense利用多个遗传数据库进行序列比对,为研究人员提供蛋白质变异影响分析。其预测结果可通过Ensembl VEP工具使用,支持蛋白质功能研究和相关疾病研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号