Project Icon

modular-diffusion

灵活可扩展的PyTorch扩散模型框架

Modular Diffusion是一个基于PyTorch的模块化扩散模型框架,为设计和训练自定义扩散模型提供了简洁的API。该框架支持多种噪声类型、调度类型、去噪网络和损失函数,并提供了预构建模块库。Modular Diffusion适用于图像生成和非自回归文本合成等多种应用场景,适合AI研究人员和爱好者使用。其模块化设计简化了新型扩散模型的创建和实验过程。

pytorch-stable-diffusion - 从零完成Stable Diffusion的PyTorch实现
该项目通过PyTorch从头实现Stable Diffusion,包括权重和tokenizer文件的下载链接,以及微调模型的下载指南。特别感谢多个相关开源项目的支持,完善此实现。
swift-diffusion - Swift重新实现的Stable Diffusion模型
AI绘图GithubStable DiffusionSwift Diffusion开源项目深度学习移动设备优化
Swift重新实现的单文件Stable Diffusion模型,包含CLIP文本处理、UNet扩散和解码器等核心组件。项目致力于在移动设备上运行Stable Diffusion,通过内存优化和性能提升,实现与原始Python版本相当的效果。目前已完成主要模型移植,为移动AI应用开发提供新的可能。
DiffusionFromScratch - 实践教程:从零构建和训练稳定扩散模型
GithubStable DiffusionUNet图像生成开源项目教程机器学习
DiffusionFromScratch是一个开源项目,提供精简代码库用于重建稳定扩散模型。项目特点包括单Python脚本实现、支持MNIST和CelebA数据集训练,以及提供多个Colab笔记本。这些笔记本涵盖模型架构探索、UNet模型构建和基于文本生成MNIST图像等内容。项目还展示了演示输出和音乐视频生成示例,为学习稳定扩散模型提供了实用资源。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
autoregressive-diffusion-pytorch - 自回归扩散模型:无向量量化的图像生成方法
GithubPyTorch图像生成开源项目深度学习神经网络自回归扩散
autoregressive-diffusion-pytorch是一个基于PyTorch的自回归扩散模型实现,源自'Autoregressive Image Generation without Vector Quantization'论文。模型支持序列和图像输入,无需向量量化即可生成高质量图像。项目提供简洁API接口,包含详细使用说明和示例代码,适合研究人员和开发者探索自回归扩散模型。
HiDiffusion - 无需训练即可提升扩散模型分辨率和速度的方法
AI绘图GithubHiDiffusion图像生成开源项目扩散模型高分辨率
HiDiffusion是一种提高预训练扩散模型分辨率和速度的方法,无需额外训练。通过添加单行代码即可集成到现有扩散管道中。它支持文本到图像、图像到图像和修复等多种任务,适用于Stable Diffusion XL、Stable Diffusion v2等主流模型。HiDiffusion还兼容ControlNet等下游任务,为图像生成提供更高质量和效率。
diffusion-nbs - 扩散模型入门资源集合
AIGithub图像生成开源项目扩散模型机器学习深度学习
diffusion-nbs项目是一个专注于扩散模型的入门资源集合。该项目提供了一系列教程和Jupyter notebooks示例,旨在帮助初学者和研究人员理解扩散模型的基本概念。内容涵盖了扩散过程的原理和实践应用,为学习者提供了扎实的基础知识,并展示了如何在各种场景中应用这一技术。
flash-diffusion - 用于加速条件扩散模型的高效蒸馏技术
Flash DiffusionGithubLoRA加速技术图像生成开源项目扩散模型
Flash Diffusion是一种用于加速预训练扩散模型图像生成的蒸馏方法。该技术高效、快速、通用且兼容LoRA,在COCO数据集上实现了少步骤图像生成的先进性能。Flash Diffusion只需几小时GPU训练时间和较少可训练参数,适用于文本生成图像、图像修复、换脸和超分辨率等多种任务。它支持UNet和DiT等不同骨干网络,能够显著减少采样步骤,同时保持高质量的图像生成效果。
Smooth-Diffusion - 提升扩散模型潜在空间平滑性的新方法
CVPR 2024GithubSmooth Diffusion图像生成开源项目扩散模型潜在空间
Smooth Diffusion是一种创新的扩散模型技术,通过优化潜在空间的平滑性来提升模型性能。这种方法在图像插值、反演和编辑任务中展现出显著优势,实现了更连续的过渡效果、更低的反演误差,以及更好的未修改内容保留。通过在训练过程中引入变化约束,Smooth Diffusion为扩散模型研究开辟了新方向。
cycle-diffusion - 零样本图像翻译与无配对图片转换的扩散模型方法
CycleDiffusionGithubHuggingFacePyTorch开源项目扩散模型零样本图像编辑
该项目展示了如何正规化扩散模型中的随机种子,并实现零样本图像到图像翻译和指导。CycleDiffusion方法无需配对图像,利用稳定扩散等模型实现图像翻译。项目还提供详细的安装和使用指南,包括依赖项、预训练模型和评估数据等内容,通过这些工具可提高生成图像的质量和一致性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号