Project Icon

swin2SR-realworld-sr-x4-64-bsrgan-psnr

基于SwinV2的实景图像4倍超分辨率模型

Swin2SR是一款图像超分辨率模型,支持图像4倍放大。该模型由Conde等人开发,基于SwinV2 Transformer架构,专注于解决实际场景中的图像超分辨率问题,可有效处理压缩图像的放大和修复。模型提供完整的官方文档支持。

edsr-base - 轻量级单图像超分辨率深度残差网络
DIV2KEDSRGithubHuggingface图像超分辨率开源项目模型深度学习计算机视觉
EDSR-base是一种轻量级单图像超分辨率深度学习模型,基于增强型深度残差网络架构。该模型在DIV2K数据集上预训练,支持2倍、3倍和4倍图像放大。与原始EDSR相比,EDSR-base采用16个残差块和64个通道,模型大小约5MB。在多个基准数据集上,其PSNR和SSIM指标均优于双三次插值。研究者可通过super-image库使用该模型进行图像放大实验。
swin-base-patch4-window12-384 - 高效图像分类的Swin Transformer视觉模型
GithubHuggingfaceSwin Transformer图像分类层次特征图开源项目模型自注意力机制视觉转换器
Swin Transformer是一款视觉Transformer,通过使用层级特征图和移窗技术,进行高效图像分类。模型在ImageNet-1k数据集上以384x384分辨率训练,具备线性计算复杂度,使其适用于图像分类和密集识别任务。模型可用于原始图像分类,或者在模型集中寻找细化版本,适合处理计算密集型任务。
iSeeBetter - 时空融合视频超分辨率方法
GithubPyTorch图像质量开源项目深度学习生成对抗网络视频超分辨率
iSeeBetter是一种新型视频超分辨率算法,结合循环生成反投影网络和SRGAN,从相邻帧中提取时空信息。采用四重损失函数优化模型,在多数场景下超越现有方法,实现更高质量的视频放大效果。该方法融合了单帧和多帧超分辨率技术,为视频画质提升提供了新的解决方案。
Fast-SRGAN - 基于Pixel Shuffle的SR-GAN实时超分辨率视频放大
Fast-SRGANGithubPython 3.10像素洗牌开源项目超分辨率预训练模型
Fast-SRGAN是一个开源项目,基于SR-GAN架构和Pixel Shuffle技术,旨在实现实时超分辨率视频放大。实验证明,在MacBook M1 Pro GPU上可以达到720p视频的30fps处理速度。项目提供预训练模型并支持自定义训练参数,用户可通过配置文件或命令行参数进行设置并在Tensorboard上监控训练进度。欢迎社区贡献意见和改进。
swin-base-patch4-window7-224-in22k - 基于shifted windows的分层视觉Transformer图像处理模型
GithubHuggingfaceSwin Transformer图像分类图像识别开源项目模型深度学习计算机视觉
Swin Transformer是一个在ImageNet-21k数据集上预训练的视觉模型,通过shifted windows机制实现局部特征提取,降低计算复杂度。模型采用分层特征图构建和局部注意力计算方式,适用于图像分类和密集识别任务,计算复杂度与输入图像大小呈线性关系
sd-webui-stablesr - 提高图像超分辨率,适用于各种类型的图片处理
Automatic1111 WebUIGithubJianyi WangStable DiffusionStableSR开源项目超分辨率
此页面介绍了StableSR项目及其主要功能和用途。StableSR显著提升了图像细节和色彩准确度,并降低显存需求,适用于综合性图像处理。提供了SD2.1 768和512版本以支持高分辨率处理。此外,项目通过负提示词进一步优化图像质量,适合摄影、动漫及AIGC图像的超分辨率处理,且提供详细的安装和使用指南。
BasicSR - 基于PyTorch的图像视频复原工具箱 实现多种先进算法
BasicSRGithubPyTorch图像复原开源项目视频复原超分辨率
BasicSR是基于PyTorch的图像和视频复原工具箱,实现了ESRGAN、BasicVSR等多种先进算法。它支持超分辨率、去噪、去模糊等任务,并提供训练测试指南、数据集准备工具和模型库。该项目为图像复原研究提供了一个功能丰富的开源平台,方便研究人员进行算法开发和性能对比。
stable-diffusion-x4-upscaler - 基于稳定扩散技术的AI图像4倍放大模型
GithubHuggingfaceStable Diffusion上采样人工智能图像生成开源项目机器学习模型
stable-diffusion-x4-upscaler是一个开源的AI图像放大模型,基于稳定扩散技术开发。它可以将图像分辨率提高4倍,同时保持图像质量。该模型支持文本引导,能根据描述优化放大效果。采用潜在扩散模型技术,在1000万张高分辨率图像上训练。适用于图像分辨率提升、艺术创作和图像编辑等领域。
swinv2-tiny-patch4-window8-256 - 基于分层特征图的轻量级视觉Transformer模型
GithubHuggingfaceImageNetSwin Transformer v2图像分类开源项目模型深度学习计算机视觉
Swin Transformer V2是一个在ImageNet-1k数据集上预训练的视觉模型,采用分层特征图结构和局部窗口注意力机制,实现线性计算复杂度。模型整合了残差后归一化和余弦注意力等技术,在保持256x256分辨率输入的同时,提供了稳定的图像分类和特征提取能力。
AnimeSR - 针对动画视频的高质量超分辨率模型
AnimeSRGithub动画视频开源项目深度学习神经网络超分辨率
AnimeSR是一个专为动画视频设计的超分辨率模型。该项目采用创新技术学习真实世界的动画视频超分辨率,有效提升视频清晰度和质量。AnimeSR提供预训练模型、推理脚本和训练代码,可处理单帧图像和视频。该模型在保持动画风格的同时,能实现更自然的纹理和背景恢复,并减少伪影。项目还发布了AVC数据集用于模型训练和测试。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号