Project Icon

swin2SR-realworld-sr-x4-64-bsrgan-psnr

基于SwinV2的实景图像4倍超分辨率模型

Swin2SR是一款图像超分辨率模型,支持图像4倍放大。该模型由Conde等人开发,基于SwinV2 Transformer架构,专注于解决实际场景中的图像超分辨率问题,可有效处理压缩图像的放大和修复。模型提供完整的官方文档支持。

swinv2_tiny_window8_256.ms_in1k - Swin Transformer V2轻量级图像分类与特征提取模型
GithubHuggingfaceImageNet-1kSwin Transformer V2timm图像分类开源项目模型特征提取
swinv2_tiny_window8_256.ms_in1k是基于Swin Transformer V2架构的轻量级图像分类模型,在ImageNet-1k数据集上预训练。该模型拥有2830万参数,6.0 GMACs计算量,支持256x256像素输入。它可用于图像分类、特征图提取和图像嵌入等任务,提供高效的视觉特征提取能力。研究人员和开发者可通过timm库轻松加载此预训练模型,应用于多种计算机视觉项目。
swin_base_patch4_window7_224.ms_in22k_ft_in1k - Swin Transformer模型:用于图像分类和特征提取的层级视觉架构
GithubHuggingfaceImageNetSwin Transformertimm图像分类开源项目模型特征提取
swin_base_patch4_window7_224.ms_in22k_ft_in1k是一个基于Swin Transformer架构的图像分类模型,在ImageNet-22k上预训练并在ImageNet-1k上微调。该模型拥有8780万参数,支持224x224像素图像处理,可用于图像分类和特征提取。通过timm库,研究人员可以方便地加载预训练模型,进行图像分类、特征图提取或生成图像嵌入。这一模型在计算效率和性能之间实现了良好平衡,适用于各种计算机视觉任务。
cards_bottom_right_swin-tiny-patch4-window7-224-finetuned-v2 - 基于Swin Transformer图像分类模型实现60.79%精度
GithubHuggingfacemicrosoft/swin-tiny-patch4-window7-224图像分类开源项目机器学习优化模型模型训练深度学习
这是一个基于microsoft/swin-tiny-patch4-window7-224架构的图像分类模型。经过30轮训练迭代,模型采用128批量大小,5e-05学习率,结合Adam优化器与线性学习率调度策略。模型性能从初始的41.56%提升至60.79%,实现稳定的分类效果。
Realistic_Vision_V3.0_VAE - 内置VAE优化的写实风格AI图像生成模型
AI绘图GithubHuggingfaceMage.SpaceNovaXL图像生成开源项目模型模型训练
Realistic_Vision_V3.0是一个集成VAE编码器的AI图像生成模型,主要用于创建写实风格图像。模型使用Euler A或DPM++ SDE Karras采样方式,通过配置CFG参数和负面提示词来控制生成质量。支持配合4x-UltraSharp工具进行超分辨率处理,目前已在Mage.Space平台部署。
EvTexture - 基于事件数据的视频超分辨率纹理增强
EvTextureGithub事件相机开源项目深度学习纹理增强视频超分辨率
EvTexture是一种新型视频超分辨率技术,利用事件相机数据增强视频纹理细节。该项目发表于ICML 2024,提供PyTorch实现、预训练模型和测试数据集。在Vid4和REDS4等测试集上,EvTexture实现了4倍超分辨率的最佳性能,推动了高质量视频增强研究的发展。
res-adapter - 扩散模型的无缝分辨率适配器
AI绘图GithubResAdapter分辨率适配图像生成开源项目扩散模型
ResAdapter是一款轻量级分辨率适配器,可集成至各类扩散模型中实现任意分辨率图像生成。无需额外训练和推理,ResAdapter通过少量参数(SD1.5为0.9M, SDXL为0.5M)支持广泛的分辨率范围。项目提供使用指南、预训练权重及与多种模型的集成示例,展示了其在文本生成图像和图像编辑等任务中的应用效果。
swin_tiny_patch4_window7_224.ms_in1k - Swin Transformer: 基于移位窗口的层级视觉模型
GithubHuggingfaceImageNetSwin Transformertimm图像分类开源项目模型特征提取
swin_tiny_patch4_window7_224.ms_in1k是一个基于Swin Transformer架构的图像分类模型,在ImageNet-1k数据集上预训练。该模型包含2830万参数,支持224x224像素输入,可用于图像分类和特征提取。它采用分层视觉Transformer结构和移位窗口技术,提高了效率和性能。研究者可通过timm库便捷地使用此模型进行推理或进一步训练,适用于各种计算机视觉任务。
Qwen2-VL-72B-Instruct-AWQ - 强大多模态AI实现高分辨率图像和长视频深度理解
GithubHuggingfaceQwen2-VL多模态大语言模型开源项目模型视觉理解视频理解
Qwen2-VL-72B-Instruct-AWQ是一款先进的多模态AI模型,在图像和视频理解方面表现卓越。这个模型能够处理各种分辨率的图像,理解超过20分钟的长视频,并支持多语言文本识别。通过采用动态分辨率和多模态旋转位置编码等创新技术,该模型在视觉理解基准测试中展现了领先优势。Qwen2-VL作为通用视觉语言模型,可广泛应用于复杂推理和内容创作等多个领域。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
sd-vae-ft-mse - 改进稳定扩散自编码器提升图像重建效果
GithubHuggingfaceStable Diffusion图像生成开源项目模型模型微调深度学习自动编码器
sd-vae-ft-mse是一款经过微调的稳定扩散自编码器,在LAION-Aesthetics和LAION-Humans数据集上训练。该模型旨在提高图像重建质量,尤其是人脸细节。相比原始模型,它在PSNR和SSIM等指标上有明显提升,能够生成更平滑的图像。该模型可作为VAE组件轻松集成到现有的diffusers工作流中,用于稳定扩散图像生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号