Project Icon

anserini

开源可复现信息检索研究工具包

Anserini是基于Lucene开发的开源信息检索工具包,致力于推动可复现的学术研究。该工具包提供从索引构建到结果评估的端到端实验支持,实现了BM25、doc2query-T5、SPLADE等多种先进检索模型。Anserini可应用于各类标准IR测试集,有助于缩小信息检索研究与实际搜索应用之间的差距。

Anserini

build codecov Generic badge Maven Central LICENSE doi

Anserini is a toolkit for reproducible information retrieval research. By building on Lucene, we aim to bridge the gap between academic information retrieval research and the practice of building real-world search applications. Among other goals, our effort aims to be the opposite of this.* Anserini grew out of a reproducibility study of various open-source retrieval engines in 2016 (Lin et al., ECIR 2016). See Yang et al. (SIGIR 2017) and Yang et al. (JDIQ 2018) for overviews.

❗ Anserini was upgraded from JDK 11 to JDK 21 at commit 272565 (2024/04/03), which corresponds to the release of v0.35.0.

💥 Try It!

Anserini is packaged in a self-contained fatjar, which also provides the simplest way to get started. Assuming you've already got Java installed, fetch the fatjar:

wget https://repo1.maven.org/maven2/io/anserini/anserini/0.36.1/anserini-0.36.1-fatjar.jar

The follow commands will generate a SPLADE++ ED run with the dev queries (encoded using ONNX) on the MS MARCO passage corpus:

java -cp anserini-0.36.1-fatjar.jar io.anserini.search.SearchCollection \
  -index msmarco-v1-passage.splade-pp-ed \
  -topics msmarco-v1-passage.dev \
  -encoder SpladePlusPlusEnsembleDistil \
  -output run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt \
  -impact -pretokenized

To evaluate:

java -cp anserini-0.36.1-fatjar.jar trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt

See detailed instructions for the current fatjar release of Anserini (v0.36.1) to reproduce regression experiments on the MS MARCO V2.1 corpora for TREC 2024 RAG, on MS MARCO V1 Passage, and on BEIR, all directly from the fatjar!

Older instructions

🎬 Installation

Most Anserini features are exposed in the Pyserini Python interface. If you're more comfortable with Python, start there, although Anserini forms an important building block of Pyserini, so it remains worthwhile to learn about Anserini.

You'll need Java 21 and Maven 3.9+ to build Anserini. Clone our repo with the --recurse-submodules option to make sure the eval/ submodule also gets cloned (alternatively, use git submodule update --init). Then, build using Maven:

mvn clean package

The tools/ directory, which contains evaluation tools and other scripts, is actually this repo, integrated as a Git submodule (so that it can be shared across related projects). Build as follows (you might get warnings, but okay to ignore):

cd tools/eval && tar xvfz trec_eval.9.0.4.tar.gz && cd trec_eval.9.0.4 && make && cd ../../..
cd tools/eval/ndeval && make && cd ../../..

With that, you should be ready to go. The onboarding path for Anserini starts here!

Windows tips

If you are using Windows, please use WSL2 to build Anserini. Please refer to the WSL2 Installation document to install WSL2 if you haven't already.

Note that on Windows without WSL2, tests may fail due to encoding issues, see #1466. A simple workaround is to skip tests by adding -Dmaven.test.skip=true to the above mvn command. See #1121 for additional discussions on debugging Windows build errors.

⚗️ End-to-End Regression Experiments

Anserini is designed to support end-to-end experiments on various standard IR test collections out of the box. Each of these end-to-end regressions starts from the raw corpus, builds the necessary index, performs retrieval runs, and generates evaluation results. See individual pages for details.

MS MARCO V1 Passage Regressions

MS MARCO V1 Passage Regressions

devDL19DL20
Unsupervised Sparse
Lucene BoW baselines🔑🔑🔑
Quantized BM25🔑🔑🔑
WordPiece baselines (pre-tokenized)🔑🔑🔑
WordPiece baselines (Huggingface)🔑🔑🔑
WordPiece + Lucene BoW baselines🔑🔑🔑
doc2query🔑
doc2query-T5🔑🔑🔑
Learned Sparse (uniCOIL family)
uniCOIL noexp🫙🫙🫙
uniCOIL with doc2query-T5🫙🫙🫙
uniCOIL with TILDE🫙
Learned Sparse (other)
DeepImpact🫙
SPLADEv2🫙
SPLADE++ CoCondenser-EnsembleDistil🫙🅾️🫙🅾️🫙🅾️
SPLADE++ CoCondenser-SelfDistil🫙🅾️🫙🅾️🫙🅾️
Learned Dense (HNSW indexes)
cosDPR-distilfull:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️
BGE-base-en-v1.5full:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️full:🫙🅾️
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号