Project Icon

EdgeSAM

边缘设备上快速的分割模型EdgeSAM

EdgeSAM通过优化的Prompt-In-the-Loop蒸馏方法,为边缘设备提供高效的分割模型。相较于原始SAM,EdgeSAM在速度上提升了40倍,并在iPhone 14上实现了超过30帧每秒的性能。此外,EdgeSAM在COCO和LVIS数据集上的mIoUs分别提升了2.3和3.2,性能优于MobileSAM。该项目支持ONNX和CoreML平台,并已经集成到多个开源工具中。用户还可以通过iOS App方便地使用EdgeSAM。

SAM-Adapter-PyTorch - 提升复杂场景下图像分割效果的开源项目
GithubICCVPyTorchPythonSAM-AdapterSegment Anything开源项目
SAM-Adapter项目提升了SAM在伪装、阴影和医疗图像分割中的表现。最新的更新支持更强大的SAM2骨干网络,并提供多种预训练模型和数据集下载链接,便于快速上手。该项目在IEEE/CVF国际计算机视觉会议上展示,并包含详细的环境配置和训练指南,方便研究人员进行深度学习任务。
evf-sam2-multitask - 创新视觉语言融合技术提升文本引导图像分割效果
EVF-SAMGithubHuggingface人工智能图像分割开源项目模型深度学习视觉语言融合
EVF-SAM项目引入了早期视觉语言融合技术,旨在优化文本引导的图像分割任务。通过有效结合视觉与语言信息,该技术显著提升了分割的精确度和效率。项目提供了模型检查点,使用者可通过源代码中的'inference.py'文件了解具体应用方法。值得注意的是,当前版本需要从源代码直接导入模型脚本,尚不支持'AutoModel.from_pretrained(...)'功能。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
SAM4MIS - 医学图像分割技术的前沿进展
GithubSAM人工智能医学图像分割开源项目深度学习计算机视觉
SAM4MIS项目综述了Segment Anything Model (SAM)和SAM2在医学图像分割领域的应用进展。该项目涵盖了从经验评估到方法改进的全面研究成果,为医学图像分割提供了最新见解。通过持续跟踪和汇总SAM相关研究,SAM4MIS为医学图像分析研究提供了重要参考,促进了该领域技术的创新。
sam-vit-base - 基于ViT的高效零样本图像分割模型
GithubHuggingfaceSAM人工智能图像分割开源项目模型深度学习计算机视觉
sam-vit-base是Segment Anything Model (SAM)的ViT Base版本,一个强大的图像分割模型。它可根据点或框等输入提示生成高质量对象掩码,适用于多种分割任务。该模型在庞大数据集上训练,具备出色的零样本性能。其架构包含视觉编码器、提示编码器和掩码解码器,支持提示式和自动化掩码生成,为计算机视觉研究提供了新的可能性。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
sssegmentation - 开源语义分割工具箱 集成多种先进算法和模型
GithubPyTorch开源工具开源项目深度学习计算机视觉语义分割
sssegmentation是基于PyTorch的开源语义分割工具箱,提供高性能、模块化设计和统一基准测试。它集成多种流行分割框架,支持各类backbone网络和分割器模型,包括SAM、MobileSAM等最新技术。该项目为语义分割研究和应用开发提供灵活易用的平台。
ComfyUI-YoloWorld-EfficientSAM - YOLO-World + EfficientSAM for ComfyUI 的非官方实现,提供高效的对象检测与实例分割功能
ComfyUIEfficientSAMGithubYOLO-World实例分割对象检测开源项目
该项目非官方实现了YOLO-World和EfficientSAM,通过融合这两个模型,提供高效的对象检测与实例分割功能。版本V2.0新增了蒙版分离与提取功能,支持指定蒙版单独输出,可处理图像和视频。项目特点包括支持加载多种YOLO-World和EfficientSAM模型,提供检测框厚度、置信度阈值、IoU阈值等配置选项,以提升检测与分割的精准性。详细的视频演示和安装指南,使用户能够轻松上手,体验高效的图像处理能力。
Medical-SAM2 - 基于SAM2框架的2D和3D医学图像精准分割模型
GithubMedical SAM 2医学影像图像分割开源项目深度学习计算机视觉
Medical-SAM2是一个开源的医学图像分割模型,基于SAM2框架开发。该模型支持2D和3D医学图像分割,适用于REFUGE眼底图像和BTCV腹部多器官等数据集。项目提供环境配置、数据准备和训练步骤指南,以及预训练权重。Medical-SAM2为医学图像分析研究提供了实用的工具和资源。
amc - 自动化模型压缩技术提升移动设备AI性能
AutoMLGithubImageNetMobileNet剪枝开源项目模型压缩
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号