Project Icon

benchmark_VAE

统一实现常见变分自编码器并提供基准比较

pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。

Python Python Documentation Status

Documentation

pythae

This library implements some of the most common (Variational) Autoencoder models under a unified implementation. In particular, it provides the possibility to perform benchmark experiments and comparisons by training the models with the same autoencoding neural network architecture. The feature make your own autoencoder allows you to train any of these models with your own data and own Encoder and Decoder neural networks. It integrates experiment monitoring tools such wandb, mlflow or comet-ml 🧪 and allows model sharing and loading from the HuggingFace Hub 🤗 in a few lines of code.

News 📢

As of v0.1.0, Pythae now supports distributed training using PyTorch's DDP. You can now train your favorite VAE faster and on larger datasets, still with a few lines of code. See our speed-up benchmark.

Quick access:

Installation

To install the latest stable release of this library run the following using pip

$ pip install pythae

To install the latest github version of this library run the following using pip

$ pip install git+https://github.com/clementchadebec/benchmark_VAE.git

or alternatively you can clone the github repo to access to tests, tutorials and scripts.

$ git clone https://github.com/clementchadebec/benchmark_VAE.git

and install the library

$ cd benchmark_VAE
$ pip install -e .

Available Models

Below is the list of the models currently implemented in the library.

ModelsTraining examplePaperOfficial Implementation
Autoencoder (AE)Open In Colab
Variational Autoencoder (VAE)Open In Colablink
Beta Variational Autoencoder (BetaVAE)Open In Colablink
VAE with Linear Normalizing Flows (VAE_LinNF)Open In Colablink
VAE with Inverse Autoregressive Flows (VAE_IAF)Open In Colablinklink
Disentangled Beta Variational Autoencoder (DisentangledBetaVAE)Open In Colablink
Disentangling by Factorising (FactorVAE)Open In Colablink
Beta-TC-VAE (BetaTCVAE)Open In Colablinklink
Importance Weighted Autoencoder (IWAE)Open In Colablinklink
Multiply Importance Weighted Autoencoder (MIWAE)Open In Colablink
Partially Importance Weighted Autoencoder (PIWAE)Open In Colablink
Combination Importance Weighted Autoencoder (CIWAE)Open In Colablink
VAE with perceptual metric similarity (MSSSIM_VAE)Open In Colablink
Wasserstein Autoencoder (WAE)Open In Colablinklink
Info Variational Autoencoder (INFOVAE_MMD)Open In Colablink
VAMP Autoencoder (VAMP)Open In Colablinklink
Hyperspherical VAE (SVAE)Open In Colablinklink
Poincaré Disk VAE (PoincareVAE)Open In Colablinklink
Adversarial Autoencoder (Adversarial_AE)Open In Colablink
Variational Autoencoder GAN (VAEGAN) 🥗Open In Colablinklink
Vector Quantized VAE (VQVAE)Open In Colablinklink
Hamiltonian VAE (HVAE)Open In Colablinklink
Regularized AE with L2 decoder param (RAE_L2)Open In Colablinklink
Regularized AE with gradient penalty (RAE_GP)Open In Colablinklink
Riemannian Hamiltonian VAE (RHVAE)Open In Colablinklink
Hierarchical Residual Quantization (HRQVAE)Open In Colablinklink

See reconstruction and generation results for all aforementionned models

Available Samplers

Below is the list of the models currently implemented in the library.

SamplersModelsPaperOfficial Implementation
Normal prior (NormalSampler)all modelslink
Gaussian mixture (GaussianMixtureSampler)all modelslinklink
Two stage VAE sampler (TwoStageVAESampler)all VAE based modelslink
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号