Project Icon

benchmark_VAE

统一实现常见变分自编码器并提供基准比较

pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。

PyTorch-VAE - PyTorch中多种变分自编码器的实现与训练示例
GithubPyTorchPyTorch VAE变分自编码器图像生成开源项目深度学习
PyTorch-VAE项目实现了多种变分自编码器(VAE),专注于结果的可重复性,包括从Vanilla VAE到VQ-VAE的众多模型。所有模型都在CelebA数据集上训练,确保一致的对比结果。代码简洁易用,支持PyTorch和PyTorch Lightning,适合研究人员和开发者快速构建、调试和优化VAE模型。
variational-autoencoder - 变分自编码器参考实现,兼容TensorFlow和PyTorch
GithubMNISTPyTorchVariational Autoencoderjaxtensorflow开源项目
该项目提供了变分自编码器的参考实现,支持TensorFlow和PyTorch。项目中包含了逆自回归流变分家族的示例,通过变分推断对二值MNIST手写数字图像进行拟合。通过重要性采样估计边际似然,展示了高效的训练和验证结果。优化后的测试集边际对数似然达到了-95.33 nats。此外,该项目还提供了JAX实现,能够实现3倍于PyTorch的加速效果。
CV-VAE - 兼容预训练模型的视频生成技术
CV-VAEGithubVAE兼容性开源项目潜在空间视频生成
CV-VAE是一种视频变分自编码器,专为潜在生成视频模型设计。它与预训练图像和视频模型(如SD 2.1和SVD)兼容,用于视频重建和生成。项目提供代码实现和预训练模型权重,支持视频重建和文本到视频转换。CV-VAE为视频生成技术研究提供了新的工具和方向。
pythia - 大语言模型训练过程知识演化分析开源项目
GithubPythia可解释性研究大语言模型学习动态开源项目模型训练
Pythia是一个开源项目,旨在分析大语言模型训练过程中的知识演化。该项目提供完整的模型、数据和代码,包含154个训练检查点,支持研究人员深入探索学习动态和因果关系。Pythia是业界首个支持全面复现和学习动态分析的模型套件,为大语言模型的可解释性研究提供了重要工具。
benchmark - 开源基准测试集评估PyTorch性能
GithubPyTorch基准测试安装开源项目性能评估模型
PyTorch Benchmarks是评估PyTorch性能的开源基准测试集。它提供修改过的流行工作负载、标准化API和多后端支持。项目包含安装指南、多种基准测试方法和低噪声环境配置工具。支持自定义基准测试和库集成。通过夜间CI运行,持续评估PyTorch最新版本性能。
pythia-6.9b - 促进大规模语言模型可解释性研究的开源工具
GithubHuggingfacePythia大语言模型开源项目机器学习模型模型训练自然语言处理
Pythia-6.9b是EleutherAI开发的开源大规模语言模型,旨在促进可解释性研究。该模型包含69亿参数,在Pile数据集上训练,提供154个中间检查点,便于研究人员探索模型训练过程。Pythia-6.9b采用Transformer架构,性能与同类模型相当,主要用于学术研究而非直接部署。模型可能存在偏见风险,研究人员可通过Hugging Face Transformers库轻松使用。Pythia-6.9b为语言模型研究提供了理想的实验平台。
pythia-1.4b-deduped-v0 - 开源语言模型套件助力可解释性研究
EleutherAIGithubHuggingfacePythia开源项目机器学习模型自然语言处理语言模型
Pythia-1.4B-deduped是EleutherAI推出的开源语言模型,旨在推动AI可解释性研究。该模型在去重后的Pile数据集上训练,提供143个均匀分布的检查点,便于研究人员分析模型训练过程。虽然不以下游任务性能为主要目标,Pythia-1.4B-deduped在多项评估中仍表现出色,与同规模模型相当或更优。模型采用Apache 2.0许可,可用于进一步研究、微调和部署。
sae - 高效训练语言模型k稀疏自编码器的开源库
这是一个用于训练语言模型k稀疏自编码器(SAE)的开源库。它使用TopK激活函数实现激活稀疏,可扩展至大型模型和数据集,无需额外存储。该库支持加载HuggingFace Hub预训练SAE,提供命令行和编程接口,允许自定义hookpoint训练任意子模块。支持分布式训练,适用于大规模语言模型。
taesd - 轻量级自动编码器:高速解码Stable Diffusion潜在空间
AI绘图GithubStable DiffusionTAESD开源项目潜在空间自动编码器
TAESD是一款小巧的自动编码器,采用与Stable Diffusion VAE相同的潜在API。它能高效地将Stable Diffusion潜在空间解码为全尺寸图像。TAESD兼容SD1/2、SDXL、SD3和FLUX.1等多种模型,已整合到主流AI绘画工具中。该工具适用于实时预览图像生成过程和替代官方VAE的场景。尽管在细节还原方面稍有欠缺,TAESD通过轻微的质量损失换取了显著的速度和便利性提升。
VBench - 视频生成模型多维度质量评估套件
GithubPython包VBench基准套件开源项目视频生成模型评价
VBench项目提供一个全面的基准测试套件,专用于评估视频生成模型的多维质量。通过分层的评估维度,VBench可以细化并客观地评估视频生成质量的多个方面。套件包含详细的提示和评估方法,并提供人类偏好注释,确保结果与人类感知一致。用户可以选择对自定义视频或标准提示进行评估,以确保模型间的公平对比。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号