Project Icon

benchmark_VAE

统一实现常见变分自编码器并提供基准比较

pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。

pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
dc-ae-f64c128-in-1.0 - 深度压缩自编码器提高高分辨率模型性能
Deep Compression AutoencoderGithubHuggingface图像生成开源项目模型残差自编码训练加速高分辨率扩散模型
DC-AE凭借残差自编码和分阶段训练策略提升了高空间压缩率自编码器的重建精度,不仅在高分辨率扩散模型中实现了高效运行,还保持了优越的性能表现。在ImageNet 512x512测试中,DC-AE比传统SD-VAE-f8自编码器提高了19.1倍的推理速度和17.9倍的训练速度。
pythia-2.8b-deduped - 提升语言模型的解释力与科学研究
Apache许可证EleutherAIGithubHuggingfacePythia开源项目模型训练数据语言模型
Pythia Scaling Suite促进语言模型的解释性研究,其模型通过在去重后的The Pile数据集上的统一流程训练,涵盖从70M到12B多种规模。提供丰富的训练与评估细节,对比显示同类模型的优劣。适合于学术探索,但不应用于实际环境。
vector-quantize-pytorch - Pytorch向量量化库,可应用于图像和音乐生成
DeepmindGithubJukeboxOpenAIVQ-VAE-2Vector Quantization开源项目
本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。
vall-e - 开源PyTorch框架下基于EnCodec Tokenizer的音频合成实现
GithubPyTorchVALL-E人工智能开源项目模型训练音频合成
VALL-E项目是EnCodec Tokenizer在开源PyTorch环境下的实施,提供高效音频合成技术。支持GPU加速,允许用户迅速搭建、训练个性化音频模型,并通过CLI完成音频合成。包括AR和NAR模型训练,模型配置与导出等功能,并持续优化以期未来提供预训练模型和更丰富的示例。
pythia-160m - EleutherAI开发的160M参数语言模型 专为NLP研究设计
EleutherAIGithubHuggingfacePythia大语言模型开源项目机器学习模型自然语言处理
Pythia-160M是一个160M参数的英语语言模型,由EleutherAI开发,主要用于自然语言处理研究。该模型在Pile数据集上训练,提供154个中间检查点,便于分析模型行为。虽然主要用于研究目的,但其性能可与同规模的商业模型相媲美。Pythia-160M采用Transformer架构,可通过Hugging Face Transformers库轻松加载使用,适合进一步微调,但不建议直接部署。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
pythia-410m - 专为自然语言处理研究设计的中型预训练语言模型
GithubHuggingfacePythia开源项目机器学习模型深度学习自然语言处理语言模型
Pythia-410M是EleutherAI开发的410M参数预训练语言模型,在Pile数据集上训练。该模型提供143个检查点,便于研究人员进行解释性分析。Pythia-410M在多项NLP基准测试中表现优异,可应用于各种自然语言处理任务。模型采用Apache 2.0许可证开源,为语言模型行为研究提供了可控的实验环境。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号