Project Icon

benchmark_VAE

统一实现常见变分自编码器并提供基准比较

pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。

pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
taipy - 高性能数据与AI网络应用构建工具
AI应用GithubPythonTaipy开源项目数据管理热门用户界面
Taipy 是为数据科学家和机器学习工程师设计的,帮助他们使用Python快速构建数据与AI网络应用,无需学习新语言。它支持UI生成与场景/数据管理,使用户能够专注于数据和AI算法,同时简化开发和部署的复杂性。此外,Taipy还提供强大的定制能力和扩展性,让用户从简单的原型快速过済到生产就绪的应用。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
theseus - 构建适用于机器人和视觉应用的定制非线性优化层
GithubPyTorchTheseus开源项目机器人神经网络非线性优化
Theseus 是一个高效的通用库,专门用于在 PyTorch 中构建定制的非线性优化层,支持机器人和视觉问题中的端到端可微分架构。其特性包括二阶非线性优化器、线性求解器、向量化和 GPU 加速,有助于提高计算速度和内存使用效率。该库通过结合领域专用模型和神经网络模型,在保持计算梯度的同时优化 AI 模型,非常适合研究人员和开发者使用。
evaluate - 多框架兼容的机器学习评估工具库
EvaluateGithub开源项目指标机器学习模型比较评估
evaluate是一个开源的机器学习评估工具库,支持Numpy、Pandas、PyTorch、TensorFlow和JAX等多种框架。它提供了数十种涵盖自然语言处理和计算机视觉等领域的常用评估指标。用户可以使用evaluate进行模型评估、性能对比和结果报告。该库还支持创建新的评估模块并推送至Hugging Face Hub,便于比较不同指标的输出。evaluate的其他特点包括类型检查、指标卡片和社区指标功能,为研究人员和开发者提供了全面的模型评估支持。
CompressAI - 基于PyTorch的端到端压缩研究开源库
CompressAIGithubPyTorch图像压缩开源项目深度学习评估平台
CompressAI是基于PyTorch的开源库,致力于端到端压缩研究。该库提供深度学习数据压缩的自定义组件、预训练图像压缩模型,以及评估工具用于比较学习型模型与传统编解码器。支持Python 3.8+和PyTorch 1.7+,为压缩技术研究提供了实用平台。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
powerful-benchmarker - 高效模型基准测试工具,支持无监督域适应和度量学习
GithubPowerful Benchmarker域适应安装指南开源项目指标学习文件组织
提供功能强大的模型基准测试工具,适用于无监督域适应和度量学习,特色包括三种新验证方法和大规模基准排名。项目提供简便的安装步骤、路径设置和丰富的脚本支持,同时还包含Jupyter notebooks、各种脚本和测试代码,确保实验顺利进行。
ParallelWaveGAN - 通过Pytorch实现多种高效声码器模型
GithubHiFi-GANMelGANParallelWaveGAN多扬声器模型实时语音合成开源项目
ParallelWaveGAN项目以非官方形式用Pytorch实现了多种声码器模型,如Parallel WaveGAN、MelGAN等,支持实时语音合成并兼容ESPnet-TTS、NVIDIA's Tacotron2等系统。可帮助用户搭建适应多种语言的声音合成器。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号