Project Icon

benchmark_VAE

统一实现常见变分自编码器并提供基准比较

pythae库实现多种常见的变分自编码器模型,提供相同自编码神经网络架构下的基准实验和比较。用户可以用自己的数据和编码器、解码器网络训练这些模型,并集成wandb、mlflow和comet-ml等实验监控工具。最新版本支持PyTorch DDP分布式训练,提高训练速度和处理大数据集的能力。支持从HuggingFace Hub进行模型共享和加载,代码简洁高效。涵盖多种已实现模型和采样器,满足不同研究需求。

mae_st - 掩码自编码器在时空学习和视频重建中的应用
GithubMasked AutoencodersPyTorch实现开源项目时空学习视频处理预训练模型
mae_st项目是一个基于PyTorch实现的掩码自编码器时空学习框架。该项目提供预训练模型、微调和测试代码,支持在Kinetics数据集上进行训练和评估。项目特色包括交互式可视化演示,展示不同掩码率下的MAE输出效果。研究人员可借助此工具开展视频理解和重建相关研究,深入探索时空学习领域。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
diffae - 基于扩散模型的自编码器框架实现图像生成与编辑
Diffusion AutoencodersGithub图像处理开源项目深度学习生成模型计算机视觉
diffae项目实现了基于扩散模型的自编码器框架,用于高质量图像的生成和编辑。该项目提供多个预训练模型,支持FFHQ、LSUN等数据集,实现了无条件生成、图像操作和插值等功能。项目包含使用说明、模型检查点和针对不同数据集的训练脚本,为图像生成和编辑研究提供了完整的工具链。
Parameter-Efficient-Transfer-Learning-Benchmark - 统一视觉参数高效迁移学习评测基准
GithubV-PETL Bench参数高效迁移学习基准测试开源项目模型评估计算机视觉
V-PETL Bench是一个统一的视觉参数高效迁移学习评测基准。该项目选择30个多样化数据集,涵盖图像识别、视频动作识别和密集预测任务,评估25种主流PETL算法。提供模块化代码库和完整训练资源,为计算机视觉研究提供全面评测平台。
veScale - 基于PyTorch的大规模语言模型训练框架
GithubLLM训练框架PyTorch分布式训练并行计算开源项目模型执行
veScale是一个基于PyTorch的大规模语言模型训练框架,专为简化LLM训练过程而设计。它支持零代码修改、单设备抽象和自动并行规划,实现了张量并行、序列并行和数据并行等多种策略。框架还提供自动检查点重分片和nD分布式时间线功能,大幅提升了训练效率。作为一个持续发展的项目,veScale计划在未来引入更多先进功能,为研究人员和开发者提供全面的LLM训练解决方案。
pytorch-toolbelt - 专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集
GithubPyTorch乌克兰俄罗斯开源项目战争深度学习
pytorch-toolbelt是一款专为PyTorch设计的Python库,提供高效研发和Kaggle竞赛所需的工具集。其功能包括灵活的编码器-解码器架构、多种模块(如CoordConv、SCSE、Hypercolumn等)、GPU友好的测试时增强(TTA)、大图像推理及常用方法,支持多种损失函数,并与Catalyst库无缝集成。这些工具旨在简化模型构建、优化和推理过程。
dc-ae-f64c128-in-1.0 - 深度压缩自编码器提高高分辨率模型性能
Deep Compression AutoencoderGithubHuggingface图像生成开源项目模型残差自编码训练加速高分辨率扩散模型
DC-AE凭借残差自编码和分阶段训练策略提升了高空间压缩率自编码器的重建精度,不仅在高分辨率扩散模型中实现了高效运行,还保持了优越的性能表现。在ImageNet 512x512测试中,DC-AE比传统SD-VAE-f8自编码器提高了19.1倍的推理速度和17.9倍的训练速度。
vector-quantize-pytorch - Pytorch向量量化库,可应用于图像和音乐生成
DeepmindGithubJukeboxOpenAIVQ-VAE-2Vector Quantization开源项目
本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。
vall-e - 开源PyTorch框架下基于EnCodec Tokenizer的音频合成实现
GithubPyTorchVALL-E人工智能开源项目模型训练音频合成
VALL-E项目是EnCodec Tokenizer在开源PyTorch环境下的实施,提供高效音频合成技术。支持GPU加速,允许用户迅速搭建、训练个性化音频模型,并通过CLI完成音频合成。包括AR和NAR模型训练,模型配置与导出等功能,并持续优化以期未来提供预训练模型和更丰富的示例。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号