Project Icon

dolphin-2.9.4-llama3.1-8b

这款模型支持多语言与对话功能的AI系统

Dolphin 2.9.4是基于Meta Llama 3.1 8b的AI系统,专注于多语言指令和会话功能。经过8192序列长度的优化,显著提升了多语言环境的合规性和响应性。该模型采用ChatML格式,支持函数调用,数据经过过滤处理以减少偏见。由于高度合规和开放性,建议用户自行添加适当的对齐层以确保安全应用。Dolphin还具备出色的代码生成能力,适用于多种场景。

Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
Meta-Llama-3.1-70B - Meta开发的多语言大型语言模型 支持高级对话和文本生成
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Meta-Llama-3.1-70B是Meta推出的多语言大型语言模型系列之一。该模型采用优化的Transformer架构,支持128k上下文长度,在8种语言中表现优异。它专为多语言对话场景设计,可用于智能助手、自然语言生成等任务。该模型在多项行业基准测试中表现出色,超越众多开源和闭源聊天模型,为开发者提供了强大的多语言AI处理能力。Meta-Llama-3.1-70B支持商业和研究用途,为各类应用场景提供了先进的语言模型解决方案。
Llama-2-7B-Chat-GGUF - Llama 2对话模型的量化版本 支持多种推理环境
GGUFGithubHuggingfaceLlama 2人工智能大语言模型开源项目模型量化
Llama-2-7B-Chat-GGUF是Meta公司Llama 2对话模型的GGUF格式量化版本。该模型在保持性能的同时显著减小了体积,支持CPU和GPU推理。提供多种量化精度选择,适用于聊天机器人、问答系统等对话场景。作为开源大语言模型,它具有良好的效率和精确度。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
Llama-3-8B-Lexi-Uncensored - 高性能多任务AI语言模型 无限制对话与灵活应用
GithubHuggingfaceLlama-3人工智能模型开源开源项目文本生成模型自然语言处理
Llama-3-8B-Lexi-Uncensored是一款强大的AI语言模型,在AI2推理挑战、HellaSwag常识理解和GSM8k数学问题等多项任务中表现卓越。该模型在开放式LLM排行榜上平均得分66.18,展现了其在多个领域的应用潜力。虽然模型具有高度灵活性,但使用时需注意实施适当的安全措施。遵循Meta的Llama许可协议,可用于商业及其他多种用途。
h2o-danube2-1.8b-chat - 1.8B参数的聊天模型,提升自然语言生成效果
GithubH2O.aiHuggingfaceh2o-danube2-1.8b-chat变压器大语言模型开源项目文本生成模型
H2O.ai推出1.8B参数的h2o-danube2-1.8b-chat模型,基于Llama 2架构,并经过H2O LLM Studio和Mistral分词器微调。该模型适用于多种文本生成应用,支持transformers库中的集成和量化、分片设置,提升计算效率。在基准测试中表现优异,并重视负责与道德使用,欢迎用户反馈以优化性能。
OpenOrca-Platypus2-13B - 人工智能模型OpenOrca-Platypus2-13B的合并与性能分析
GithubHuggingfaceOpenOrca-Platypus2-13B开源项目文本生成模型模型评估神经网络训练数据集
OpenOrca-Platypus2-13B融合了Platypus2-13B和OpenOrcaxOpenChat-Preview2-13B,采用LoRA技术进行微调,在MMLU、ARC、HellaSwag等基准测试中表现突出,相较初版模型,尤其在LSAT逻辑推理中有显著提升。用户可通过Nomic Atlas查阅完整数据集,并使用特定框架重现基准测试结果。建议开发者在应用之前进行安全测试与调整,以优化部署效果。
DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored - 多语言大规模生成模型,专注角色扮演对话
GithubHuggingfaceLlama 3.1Meta多语言支持大语言模型开源项目模型训练数据
该项目提供多语言对话生成,模型规模从8B到405B,特别适合角色扮演场景。基于优化的Transformer架构,并结合强化学习技术,适用于商业和研究用途,遵循Llama 3.1 Community License开放授权。
Llama-3-Smaug-8B - Llama-3-Smaug-8B借助Smaug配方优化多轮对话
Abacus.AIGithubHuggingfaceLlama-3-Smaug-8B多轮交互开源项目模型模型评估真实对话
Llama-3-Smaug-8B模型利用Smaug配方优化多轮对话性能,由Abacus.AI基于Meta Llama 3开发和精调,并从Meta-Llama-3-8B-Instruct模型衍生。该模型在MT-Bench评估中表现突出,平均得分达到8.33,优于基础模型的8.10。目前使用新技术和数据,具体信息尚待公布,历史背景可参考Smaug-72B文献。
Llama-3.2-3B-Instruct - Meta开发的多语言大型语言模型 支持对话和代理任务
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B-Instruct是Meta开发的多语言大型语言模型,采用优化的Transformer架构,支持1B和3B参数规模。模型通过微调和强化学习优化对话、检索和摘要能力,支持8种官方语言。具有128k上下文长度,使用分组查询注意力提高推理效率。适用于构建AI助手、知识检索等商业和研究应用。模型支持多语言扩展,可应用于更广泛的自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号