Project Icon

sbert-base-ja

日语句向量模型:基于BERT的自然语言处理工具

sbert-base-ja是一个日语句向量模型,基于BERT架构开发。该模型利用colorfulscoop/bert-base-ja作为预训练基础,并通过日语SNLI数据集进行了微调。它能够将日语文本转化为向量形式,主要应用于句子相似度计算和文本分类等领域。模型采用SentenceTransformer结构,为开发者提供了便捷的API,有助于在多种自然语言处理任务中快速部署和应用。

bert-base-japanese-whole-word-masking - 基于日语维基百科的BERT预训练模型 采用全词掩码技术
BERTGithubHuggingface全词掩码开源项目日语预训练模型模型维基百科语料自然语言处理
该BERT模型基于日语维基百科数据预训练,采用IPA词典和MeCab进行分词,并引入全词掩码技术。模型架构与BERT base一致,包含12层结构、768维隐藏状态和12个注意力头。训练语料来自2019年9月的日语维基百科,词表规模为32000。模型在Cloud TPUs上训练完成,遵循原始BERT的训练配置,并以CC BY-SA 3.0许可证发布。
llm-jp-13b-v2.0 - 改进日本大型语言模型的开发与应用
GithubHuggingfacellm-jp大语言模型开源项目指令微调模型自然语言处理预训练
由日本团队发起,项目提供基于Transformer架构的大型语言模型,支持多种编程语言和文本生成,专注于自然语言处理。模型经过大规模数据集的预训练和细化调试,展现出卓越的文本生成能力。
japanese-roberta-base - 日语RoBERTa模型适用于掩码语言建模
GithubHuggingfacejapanese-roberta-basetransformers开源项目日语NLP模型模型训练迁移学习
此项目展示了一个经过日本CC-100和维基百科数据集训练的日语RoBERTa模型,专注于掩码语言建模。该模型在12层768隐藏单元的架构中实现了良好的语义预测能力,适合自然语言处理应用,且支持自定义位置编码。
stsb-bert-base - 基于BERT的文本向量化和语义相似度分析工具
BERTGithubHuggingfacesentence-transformers句向量开源项目模型自然语言处理语义相似度
stsb-bert-base是一个已弃用的句子转换模型,基于BERT架构可将文本转化为768维向量表示。模型通过sentence-transformers或HuggingFace Transformers库提供支持,适用于文本聚类和语义搜索。尽管不再推荐使用,但其架构设计和实现方法对理解文本向量化技术具有重要参考意义。
GLuCoSE-base-ja - 基于LUKE的日语文本嵌入模型GLuCoSE支持语义相似度和搜索应用
GLuCoSEGithubHuggingfaceLUKE开源项目文本嵌入模型自然语言处理语义搜索
GLuCoSE-base-ja是基于LUKE的日语文本嵌入模型,通过多样化数据集训练而成。该模型支持512个token输入和768维输出,采用平均池化,适用于句向量相似度和语义搜索任务。在JSTS语义相似度和AIO3零样本搜索基准测试中,GLuCoSE-base-ja的表现超越了包括OpenAI的text-embedding-ada-002在内的多个模型。研究人员可以通过sentence-transformers库轻松使用该模型,为日语自然语言处理应用提供支持。
deberta-v2-base-japanese-char-wwm - 日语DeBERTa V2模型实现字符级遮蔽与预训练
DeBERTa V2GithubHuggingfacetransformers字符级别开源项目日本語模型自然语言处理
该项目介绍了日语DeBERTa V2 base模型,该模型在日语Wikipedia、CC-100和OSCAR数据集上进行字符级分词和整体词遮蔽的预训练,可用于掩码语言建模及下游任务微调,采用了22,012个字符级子词的sentencepiece分词模型,通过transformers库进行训练。
japanese-hubert-base - 日语HuBERT Base自监督语音学习模型
GithubHuBERTHuggingfaceReazonSpeechrinna/japanese-hubert-base开源项目日语语音模型模型自我监督学习
rinna Co., Ltd.发布的日语HuBERT Base模型,采用与原始HuBERT相同的12层变换器结构,通过ReazonSpeech语料库的19000小时语音数据进行训练,支持自监督语音表示学习。模型提供详尽的训练配置和论文参考,便于研究和应用。使用Transformers库可方便地实现日语语音处理。
ko-sbert-nli - 基于SBERT架构的韩语语义相似度模型实现文本向量化
GithubHuggingfacesentence-transformers开源项目文本嵌入模型自然语言处理语义搜索韩语模型
该模型基于sentence-transformers框架,将韩语文本转化为768维向量。经KorNLI数据集训练,在KorSTS评估中获83.16%相关性。适用于句子编码、语义搜索和文本聚类,支持Python接口和pip安装。
t5-base-japanese - 高效的日语文本转换T5预训练模型
GithubHuggingfaceT5准确率开源项目日本语料库模型语言模型迁移学习
本项目针对日语文本处理,提供了一款预训练的T5模型,该模型利用Wikipedia、OSCAR和CC-100等约100GB的数据进行训练。相比Google多语言T5模型,虽尺寸小25%,但在精度上有所提升,尤其是在livedoor新闻分类任务中表现突出。适用于日语文本高效处理,需关注潜在的偏见和伦理输出问题。
japanese-hubert-large - 大规模日语语音表示学习模型HuBERT
GithubHuBERTHuggingfacerinna开源项目日语语音模型模型自监督学习语音识别
rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号