Project Icon

sbert-base-ja

日语句向量模型:基于BERT的自然语言处理工具

sbert-base-ja是一个日语句向量模型,基于BERT架构开发。该模型利用colorfulscoop/bert-base-ja作为预训练基础,并通过日语SNLI数据集进行了微调。它能够将日语文本转化为向量形式,主要应用于句子相似度计算和文本分类等领域。模型采用SentenceTransformer结构,为开发者提供了便捷的API,有助于在多种自然语言处理任务中快速部署和应用。

clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
roberta-base-japanese-with-auto-jumanpp - 日语RoBERTa预训练语言模型
GithubHuggingfaceRoBERTa开源项目文本预训练日语模型机器学习模型自然语言处理
RoBERTa日语基础模型通过日本维基百科和CC-100语料库训练而成,采用Juman++分词系统和32000规模词表,支持掩码语言建模与下游任务微调。模型经过A100 GPU集群训练,在JGLUE基准测试中展现出稳定性能,可作为日语自然语言处理的基础模型使用。
t5-large-medium - 基于Transformer的日文预训练模型,提高NLP任务性能
GithubHuggingfaceRetrievaT5 v1.1Transformer开源项目日语模型预训练
该T5 v1.1模型基于Transformer架构,专为日文语料进行预训练。通过使用GEGLU激活函数代替ReLU,提升了文本生成质量。模型在预训练时关闭Dropout以提升泛化能力,微调时可重启。训练数据包括mC4/ja和日本Wikipedia,确保日文内容的纯净性。此大型模型拥有约7.7亿参数,适用于广泛的日文自然语言处理任务,表现出优异的性能与适应性。
deberta-v2-large-japanese-char-wwm - 基于DeBERTa V2的大规模日语预训练语言模型
DeBERTa V2GithubHuggingface字符级tokenization开源项目日语模型自然语言处理预训练模型
deberta-v2-large-japanese-char-wwm是一个基于DeBERTa V2架构的日语预训练语言模型。它采用字符级分词和全词遮蔽技术,在171GB的日语语料库上训练而成。该模型支持掩码语言建模等任务,可直接处理原始文本。经26天训练后,模型在掩码语言建模评估集上达到79.5%的准确率,为日语自然语言处理研究和应用提供了强大工具。
japanese-gpt2-medium - 中型日语GPT-2模型为自然语言处理提供强大支持
GPT-2GithubHuggingfacetransformer开源项目文本生成日语模型模型自然语言处理
rinna公司开发的中型日语GPT-2模型基于CC-100和维基百科数据集训练。该模型采用24层1024隐藏单元的Transformer架构,使用sentencepiece分词器。通过Hugging Face可轻松调用,适用于多种日语自然语言处理任务。这个开源项目遵循MIT许可证,为日语NLP研究和应用奠定了坚实基础。
msmarco-cotmae-MiniLM-L12_en-ko-ja - 多语言语义理解和向量化模型
GithubHuggingfacesentence-transformers嵌入向量开源项目模型模型训练自然语言处理语义相似度
这是一个基于sentence-transformers框架的多语言语义理解模型,可将句子和段落映射为1536维向量。支持英语、韩语和日语,适用于聚类、语义搜索等任务。模型采用MSELoss训练,结合AdamW优化器,展现出优秀的跨语言语义理解能力。研究人员和开发者可通过sentence-transformers库轻松集成此模型,为多语言自然语言处理项目提供有力支持。
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
vietnamese-sbert - 基于SBERT的越南语句子相似度与语义分析模型
GithubHuggingfacesentence-transformers向量嵌入开源项目模型自然语言处理语义相似度越南语
基于sentence-transformers框架开发的越南语NLP模型,通过RoBERTa架构将文本映射至768维向量空间。支持句子相似度计算、语义搜索及文本聚类功能,可通过sentence-transformers和HuggingFace进行快速部署。该模型经过专门优化,为越南语自然语言处理任务提供精确的语义表示。
GLuCoSE-base-ja-v2 - 专为日本文本检索及句子相似度设计的嵌入模型
GLuCoSE v2GithubHuggingface句子相似性对比学习开源项目日语文本处理检索系统模型
模型专注于日本文本处理,可在CPU上运行,提升检索任务性能。通过蒸馏大规模嵌入及多阶段对比学习,GLuCoSE v2在MIRACL等任务中的表现出色。其支持语义相似度测量,适用于查询和段落检索,使用余弦相似度函数,支持512标记的输入,生成768维输出。
opus-mt-ja-en - 基于OPUS数据集的日英神经机器翻译模型
GithubHuggingfaceopus-mt-ja-en开源项目日英翻译机器翻译模型自然语言处理语言模型
该模型采用transformer-align架构,基于OPUS多语言平行语料库训练而成。预处理阶段使用了文本标准化和SentencePiece分词技术。在Tatoeba日英翻译测试集上,模型展现了优秀的性能,BLEU得分为41.7,chr-F得分为0.589。项目开源了模型权重和测试集译文,便于进行进一步的研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号