Project Icon

banglat5_nmt_en_bn

BanglaT5英孟双向神经机器翻译模型

BanglaT5是一个专注于英语和孟加拉语双向翻译的神经网络模型。通过在BanglaNMT数据集上训练,模型达到25.2 BLEU分数的翻译表现。项目开源了模型代码与文本标准化工具,支持研究人员进行低资源语言的机器翻译研究与应用开发。

opus-mt-en-bg - 英语到保加利亚语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba保加利亚语开源项目机器翻译模型英语
opus-mt-en-bg是一个基于Transformer架构的英语到保加利亚语机器翻译模型。该模型在Tatoeba测试集上达到50.6的BLEU分数和0.680的chrF值。它使用SentencePiece进行预处理,支持保加利亚语的拉丁字母变体,需要添加目标语言标记。这个模型是Helsinki-NLP开发的Tatoeba-Challenge项目的一部分,为英语到保加利亚语的翻译提供了开源解决方案。模型采用了normalization和SentencePiece (spm32k,spm32k)预处理方法,需要在句子开头添加'>>id<<'形式的目标语言标记。用户可以下载原始权重、测试集翻译和评分结果。该项目遵循Apache-2.0许可协议,为研究人员和开发者提供了可靠的英语到保加利亚语机器翻译资源。
opus-mt-th-en - 开源泰英机器翻译模型实现48.1 BLEU评分
EnglishGithubHuggingfaceOPUSTatoebaThai开源项目机器翻译模型
基于transformer-align架构开发的泰语到英语机器翻译模型,通过SentencePiece技术预处理数据,模型在Tatoeba测试集上达到48.1 BLEU评分和0.644 chrF值。项目支持泰语到英语的单向翻译,采用Apache-2.0许可证发布。
t5-v1_1-xl - Google T5-v1_1-xl:优化的大规模预训练语言模型
GithubHuggingfaceT5开源项目文本到文本转换模型自然语言处理迁移学习预训练模型
t5-v1_1-xl是Google T5语言模型的升级版本,对原始T5进行了多项技术改进。主要优化包括采用GEGLU激活函数、预训练阶段关闭dropout、专注于C4数据集预训练等。该模型调整了架构参数,增大了d_model,减小了num_heads和d_ff。作为基础模型,t5-v1_1-xl需要针对具体任务进行微调。它为自然语言处理领域的迁移学习奠定了坚实基础,可广泛应用于文本摘要、问答系统、文本分类等多种任务。
opus-mt-en-eu - 基于Transformer的英语-巴斯克语机器翻译模型 Tatoeba测试集BLEU 31.8
GithubHuggingfaceTatoeba-Challengetransformer-align巴斯克语开源项目机器翻译模型英语
opus-mt-en-eu是一个英语到巴斯克语的机器翻译模型,基于transformer-align架构构建。模型使用SentencePiece进行预处理,在Tatoeba测试集上达到31.8 BLEU分数和0.590 chr-F分数。由Helsinki-NLP开发并以Apache-2.0许可发布,适用于英语到巴斯克语的翻译任务。模型支持单向翻译,可应用于需要高质量英巴翻译的场景。
10.5B_v1 - 介绍最前沿的自然语言处理开源项目
GithubHuggingfacetransformers卡片开源项目模型训练评估
本页面介绍了在🤗transformers平台上发布的自然语言处理模型,支持直接与下游应用。页面提供模型使用指导、性能评估、环境影响及技术规格信息,帮助用户合理利用模型的同时意识到潜在的偏见、风险和局限。
t5-v1_1-xxl - Google T5模型的改进版本 提升多种NLP任务性能
C4数据集GithubHuggingfaceT5开源项目模型自然语言处理迁移学习预训练模型
t5-v1_1-xxl是Google T5模型的改进版本,采用GEGLU激活函数和优化的预训练策略。该模型在C4数据集上进行预训练,具有更大的d_model和更小的num_heads及d_ff参数。t5-v1_1-xxl在摘要、问答和文本分类等多种NLP任务中表现出色。研究人员可以利用这一模型进行迁移学习,促进自然语言处理技术的进步。
indictrans2-indic-indic-dist-320M - 支持22种印度语言的机器翻译模型
AI4BharatGithubHuggingfaceIndicTrans2多语言开源项目机器学习模型翻译
IndicTrans2 是一款支持22种印度语言之间翻译的机器翻译模型,结合了多语言模型优化以提升翻译效率。此开源项目利用BLEU、CHRF和COMET等AI技术指标提升翻译准确性,适用数据集包括FLORES-200。项目采用MIT许可协议,适用于多领域的研究与应用。
t5-base-en-generate-headline - 基于T5的智能新闻标题生成模型
GithubHuggingfaceT5模型transformers开源项目标题生成模型维基新闻自然语言处理
t5-base-en-generate-headline是一个基于T5架构的自然语言处理模型,专门用于生成新闻文章标题。该模型经过50万篇文章的训练,能够为输入的文章内容生成简洁有力的单行标题。支持Python编程接口,可轻松集成到新闻网站、内容管理系统或自动化内容平台中。这个开源项目为开发者和内容创作者提供了一种高效的方式来生成引人注目的新闻标题。
long-t5-tglobal-base - LongT5模型:基于transient-global注意力的长序列文本转换器
GithubHuggingfaceLongT5开源项目文本编码模型注意力机制自然语言处理长序列处理
long-t5-tglobal-base是Google开发的基于T5架构的文本转换模型,专为处理长序列文本而设计。该模型采用transient-global注意力机制,支持高达16384个token的输入,在文本摘要和问答等任务中表现优异。通过类Pegasus的生成式预训练,long-t5-tglobal-base可针对特定任务进行微调,为长文本处理提供了高效解决方案。
t5-large-medium - 基于Transformer的日文预训练模型,提高NLP任务性能
GithubHuggingfaceRetrievaT5 v1.1Transformer开源项目日语模型预训练
该T5 v1.1模型基于Transformer架构,专为日文语料进行预训练。通过使用GEGLU激活函数代替ReLU,提升了文本生成质量。模型在预训练时关闭Dropout以提升泛化能力,微调时可重启。训练数据包括mC4/ja和日本Wikipedia,确保日文内容的纯净性。此大型模型拥有约7.7亿参数,适用于广泛的日文自然语言处理任务,表现出优异的性能与适应性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号