Project Icon

LTSF-Linear

线性模型在时间序列预测中的应用

LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。

nolitsa - 全面的Python非线性时间序列分析库
GithubLyapunov指数NoLiTSAPython模块嵌入维度估计开源项目非线性时间序列分析
NoLiTSA是一个开源Python模块,专门用于非线性时间序列分析。它实现了多种标准算法,如嵌入延迟估计、维度估计、相关维数计算和最大Lyapunov指数估计。模块支持FT、AAFT和IAAFT替代数据生成,并提供噪声减少功能。NoLiTSA适用于复杂的时间序列分析任务,已在天体物理学和流体动力学研究中应用,为科研人员提供了可靠的分析工具。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
Crossformer - 高效利用跨维度依赖的多变量时间序列预测模型
CrossformerGithubTransformer开源项目时间序列预测注意力机制深度学习
Crossformer是一种新型Transformer模型,针对多变量时间序列预测设计。该模型采用维度分段嵌入、两阶段注意力机制和层次编码器-解码器结构,有效捕捉时间和维度间的依赖关系。Crossformer在多个基准数据集上表现优异,为长序列预测和高维数据处理提供新思路。其开源实现便于研究人员和实践者探索应用。
time-series-transformers-review - 时序数据建模中的Transformers技术综述
GithubTransformers分类开源项目异常检测时间序列预测
本项目专业整理了Transformers在时序数据建模中的资源,涵盖论文、代码和数据,全面总结其最新进展。内容持续更新,开放问题提交和拉取请求,覆盖时序预测、不规则时序建模、异常检测和分类等领域,适合学术研究及实际应用。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
UnsupervisedScalableRepresentationLearningTimeSeries - 多变量时间序列的无监督可扩展表示学习方法
GithubPyTorchUCR数据集UEA数据集开源项目无监督学习时间序列表示学习
UnsupervisedScalableRepresentationLearningTimeSeries项目提出了一种无监督可扩展表示学习方法,专门用于处理多变量时间序列数据。该方法基于三元组损失训练编码器,能够处理等长或不等长时间序列。项目提供了UCR和UEA数据集实验代码,包括迁移学习和稀疏标记实验。此外,还包含预训练模型和结果可视化工具。在多个基准数据集上,该方法展现出优秀的性能,为时间序列分析领域提供了创新解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号